Preferred Language
Articles
/
CBc6_Y4BVTCNdQwCz1uo
Improve topic modeling algorithms based on Twitter hashtags
...Show More Authors
Abstract<p>Today with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy that it is critical to find topics from tweets. While topic modeling algorithms such as Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) are originally designed to derive topics from large documents such as articles, and books. They are often less efficient when applied to short text content like Twitter. Luckily, Twitter has many features that represent the interaction between users. Tweets have rich user-generated hashtags as keywords. In this paper, we exploit the hashtags feature to improve topics learned from Twitter content without modifying the basic topic model of LSA and LDA. Users who share the same hashtag at most discuss the same topic. We compare the performance of the two methods (LSA and LDA) using the topic coherence (with and without hashtags). The experiment result on the Twitter dataset showed that LSA has better coherence score with hashtags than that do not incorporate hashtags. In contrast, our experiments show that the LDA has a better coherence score without incorporating hashtags. Finally, LDA has a better coherence score than LSA and the best coherence result obtained from the LDA method was (0.6047) and the LSA method was (0.4744) but the number of topics in LDA was higher than LSA. Thus, LDA may cause the same tweets to discuss the same subject set into different clustering.</p>
Scopus Crossref
View Publication
Publication Date
Sat Jun 01 2019
Journal Name
Synthetic Metals
Modeling tunnel currents in organic permeable-base transistors
...Show More Authors

View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Modeling and Simulating NOMA Performance for Next Generations
...Show More Authors

Non-orthogonal Multiple Access (NOMA) is a multiple-access technique allowing multiusers to share the same communication resources, increasing spectral efficiency and throughput. NOMA has been shown to provide significant performance gains over orthogonal multiple access (OMA) regarding spectral efficiency and throughput. In this paper, two scenarios of NOMA are analyzed and simulated, involving two users and multiple users (four users) to evaluate NOMA's performance. The simulated results indicate that the achievable sum rate for the two users’ scenarios is 16.7 (bps/Hz), while for the multi-users scenario is 20.69 (bps/Hz) at transmitted power of 25 dBm. The BER for two users’ scenarios is 0.004202 and 0.001564 for

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Sep 14 2016
Journal Name
Journal Of Baghdad College Of Dentistry
Effect of Mouth Rinses on Surface Roughness of Two Methacrylate-Based and Siloraine-Based Composite Resins
...Show More Authors

Background: Various fluids in the oral environment can affect the surface roughness of resin composites. This in vitro study was conducted to determine the influence of the mouth rinses on surface roughness of two methacrylate-based resin (nanofilled and packable composite) and siloraine-based resin composites.

Materials and methods: Disc-shaped specimens (12 mm in diameter and 2mm in height) were prepared from three types of composi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Engineering
Effect of Maximum Size of Aggregate on the Behavior of Reinforced Concrete Beams Analyzed using Meso Scale Modeling
...Show More Authors

In this study, simply supported reinforced concrete (RC) beams were analyzed using the Extended Finite Element Method (XFEM). This is a powerful method that is used for the treatment of discontinuities resulting from the fracture process and crack propagation in concrete. The mesoscale is used in modeling concrete as a two-phasic material of coarse aggregate and cement mortar. Air voids in the cement paste will also be modeled. The coarse aggregate used in the casting of these beams is a rounded aggregate consisting of different maximum sizes. The maximum size is 25 mm in the first model, and in the second model, the maximum size is 20 mm. The compressive strength used in these beams is equal to 26 MPa.

The subje

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed Jul 13 2016
Journal Name
International Journal Of Mathematics Trends And Technology
Designed Algorithms for Compute the Tenser Product of Representation for the Special Linear Groups
...Show More Authors

The main objective of this paper is to designed algorithms and implemented in the construction of the main program designated for the determination the tenser product of representation for the special linear group.

View Publication Preview PDF
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Ecological Engineering
Using Machine Learning Algorithms to Predict the Sweetness of Bananas at Different Drying Times
...Show More Authors

View Publication
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Mon May 06 2024
Journal Name
Journal Of Ecological Engineering
Using Machine Learning Algorithms to Predict the Sweetness of Bananas at Different Drying Times
...Show More Authors

The consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying

... Show More
Preview PDF
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Fri Feb 04 2022
Journal Name
Neuroquantology
Detecting Damaged Buildings on Post-Hurricane Satellite Imagery based on Transfer Learning
...Show More Authors

In this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Wed Feb 10 2016
Journal Name
Scientific Reports
Experimental demonstration on the deterministic quantum key distribution based on entangled photons
...Show More Authors

As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based

... Show More
View Publication
Scopus (17)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Journal Of Engineering
Experimental Study on Using Cement Kiln Dust and Plastic Bottle Waste to Improve the Geotechnical Characteristics of Expansive Soils in Sulaimani City, Northern Iraq
...Show More Authors

In this study, stabilization of expansive soils using waste materials namely; Cement Kiln Dust (CKD), and waste plastic bottles (WPB) was experimentally investigated. Using CKD and WPB are exponentially increasing day by day, due to their capability to solve both environmental and geotechnical problems successfully. Expansive soils were collected from locations with a wide range of plasticity index (PI) (15 - 27) and liquid limit (LL) (35% - 64%). Stabilizer percentages were varied from 0% to 20%, and curing durations for CKD cases were 7 and 28 days. Results showed the best percentages of CKD and WPB are 12% of each one respectively. LL, plastic limit (PL), and swelling percent (SP) loss were observed, which are 46%, 55%, and 96% respec

... Show More
View Publication Preview PDF
Crossref (2)
Crossref