Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model based on the Spike Neural Network (SNN) called IoT-Traffic Classification (IoT-TCSNN) to classify IoT devices traffic. The model consists of four phases: data preprocessing, feature extraction, classier and evaluation. The proposed model performance is evaluated according to evaluation metrics: accuracy, precision, recall and F1-score and energy usage in comparison with two models: ML based Support Vector Machine IoT-TCSVM and ML based Deep Neural Network (IoT-TCDNN). The evaluations result has been shown that IoT-TCSNN consumes less energy in contrast to IoT-TCDNN and IoT-TCSVM. Also, it gives high accuracy in comparison with IoT-TCSVM.
Business organizations have faced many challenges in recent times, most important of which is information technology, because it is widely spread and easy to use. Its use has led to an increase in the amount of data that business organizations deal with an unprecedented manner. The amount of data available through the internet is a problem that many parties seek to find solutions for. Why is it available there in this huge amount randomly? Many expectations have revealed that in 2017, there will be devices connected to the internet estimated at three times the population of the Earth, and in 2015 more than one and a half billion gigabytes of data was transferred every minute globally. Thus, the so-called data mining emerged as a
... Show MoreThe purpose of this paper is to identifying the values of some physical and Bio- Kinematic variables during the performance of the jump spike serve skill, and identifying the effect of the proposed training program using intermittent training to develop some physical and Bio- Kinematic variables and accuracy of the jump spike serve skill among the research sample. The experimental method was used and the research was conducted on a deliberately chosen sample of the players of the Army Club, who were primarily advanced in volleyball, and the number of the sample was (10) players. The conclusions were reached that the proposed training program using intermittent training has a positive effect on some of the physical and Bio- Kinematic variabl
... Show MoreThis study calculated the surface roughness length (Zo), zero-displacement length (Zd) and height of the roughness elements (ZH) using GIS applications. The practical benefit of this study is to classify the development of Baghdad, choose the appropriate places for installing wind turbines, improve urban planning, find rates of turbulence, pollution and others. The surface roughness length (Zo) of Baghdad city was estimated based on the data of the wind speed obtained from an automatic weather station installed at Al-Mustansiriyah University, the data of the satellite images digital elevation model (DEM), and the digital surface model (DSM), utilizing Remote Sensing Techniques. The study area w
... Show MoreThis review article summarizes our research focused on Cu(In, Ga)Se2 (CIGS) nanocrystals, including their synthesis and implementation as the active light absorbing material in photovoltaic devices (PVs). CIGS thin films were prepared by arrested precipitation from molecular precursors consisting of CuCl, InCl3, GaCl3 and Se metal onto Mo/soda-lime glass (SLG) substrates. We have sought to use CIGS nanocrystals synthesized with the desired stoichiometry to deposit PV device layers without high temperature processing. This approach, using spray deposition of the CIGS light absorber layers, without high temperature selenization, has enabled up to 1.5 % power conversion efficiency under AM 1.5 solar illumination. The composition and morphology
... Show MoreThis study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis
... Show MoreThis study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANO
... Show MoreThe aim of this study is to utilize the electromembrane extraction (EME) system as a manner for effective removal of zinc from aqueous solutions. A novel and distinctive electrochemical cell design was adopted consisting of two glass chambers, a supported liquid membrane (SLM) housing a polypropylene flat membrane infused with 1-octanol and a carrier. Two electrodes were used, a graphite as anode and a stainless steel as cathode. A comprehensive examination of several influential factors including the choice of carrier, the applied voltage magnitude, the initial pH of the donor solution, and the initial concentration of zinc was performed, all in a concerted effort to ascertain their respective impacts on the efficiency of zinc elim
... Show MoreThis study aims to characterize traumatic spinal cord injury (TSCI) neurophysiologically using an intramuscular fine-wire electromyography (EMG) electrode pair. EMG data were collected from an agonist-antagonist pair of tail muscles of Macaca fasicularis, pre- and post-lesion, and for a treatment and control group. The EMG signals were decomposed into multi-resolution subsets using wavelet transforms (WT), then the relative power (RP) was calculated for each individual reconstructed EMG sub-band. Linear mixed models were developed to test three hypotheses: (i) asymmetrical volitional activity of left and right side tail muscles (ii) the effect of the experimental TSCI on the frequency content of the EMG signal, (iii) and the effect
... Show More 
In this paper, we build a fuzzy classification system for classifying the nutritional status of children under 5 years old in Iraq using the Mamdani method based on input variables such as weight and height to determine the nutritional status of the child. Also, Classifying the nutritional status faces a difficult challenge in the medical field due to uncertainty and ambiguity in the variables and attributes that determine the categories of nutritional status for children, which are relied upon in medical diagnosis to determine the types of malnutrition problems and identify the categories or groups suffering from malnutrition to determine the risks faced by each group or category of children. Malnutrition in children is one of the most
... Show More