This contribution aims to investigate volume-dependent thermal and mechanical properties of the two most studied phases of molybdenum nitride (c-MoN and h-MoN) by means of the quasi-harmonic approximation approach (QHA) via first-principles calculations up to their melting point and a pressure of 12 GPa. Lattice constants, band gaps, and bulk modulus at 0 K match corresponding experimental measurements well. Calculated Bader’s charges indicate that Mo–N bonds exhibit a more ionic nature in the cubic MoN phase. Based on estimated Gibbs free energies, the cubic phase presents thermodynamic stability higher than that detected for hexagonl, with no phase transition observed in the selected T–P conditions as detected experimentally. The elastic stiffness coefficients of MoN in hexagonal structure revealed that it is stable elastically; in contrast to the cubic structure. The temperature dependence on the bulk modulus is more profound on the dense cubic phase than on the hexagonal phase. Overall, the two considered structures of molybdenum nitride display very minimal harmonic effects, evidenced by the slight variation of thermal and mechanical properties with the increase of pressure and temperature. The optical conductivity of both phases near a zero photon energy coincides well with their metallic character inferred by their corresponding DOS curves. It is expected that the thermo-elastic properties of saturated molybdenum nitrides reported in this study will aid in the continuous pursuit to enhance their catalytic and mechanical utilizations.
In this work, pure and doped Vanadium Pentoxide (V2O5) thin films with different concentration of TiO2 (0, 0.1, 0.3, 0.5) wt were obtained using Pulse laser deposition technique on amorphous glass substrate with thickness of (250)nm. The morphological, UV-Visible and Fourier Transform Infrared Spectroscopy (FT-IR) were studied. TiO2 doping into V2O5 matrix revealed an interesting morphological change from an array of high density pure V2O5 nanorods (~140 nm) to granular structure in TiO2-doped V2O5 thin film .Transform Infrared Spectro
... Show MoreIn this work, the structure properties of nano Lead sulfide PbS thin films are studied. Thin samples were prepared by pulse laser deposition and deposited on glass substrates at wavelength 1064nm wavelength with a various laser energies (200,300,400,500)nm. The study of atomic force microscope (AFM) and X-ray diffraction as well as the effect of changing the laser energy on the structural properties has been studied. It has been observed that the membrane formed is of the polycrystalline type and the predominant phase is the plane (111) and (200). The minimum grain size obtained was 16.5 nm at a laser energy about 200 mJ. The results showed that thin films of average granular sizes (75 nm) could be prepared.As for the optical properties,
... Show MoreThere is no doubt that optical fiber technology is one of the most important stages of the communications revolution at all and it is of utmost importance in our daily life. In this work, five fibers with core radii 2.5, 4.5 and 6.5–8.5 μm were designed. The properties of all guided modes have been calculated at a wavelength of 1550 nm by using RP Fiber Calculator. A single-mode fiber is obtained when the core radius approaches the wavelength. As the core radius is increased, the fiber becomes a multimode. The percentage power in the core increases with increasing core radius. The modes profiles were illustrated and compared with the modern references.
Study the effect of doping V2O5 on polymers poly vinyl alcohol ( PVA), poly vinyl pyrrolidone (PVP) on the optical and structural properties for film prepared by using Casting method at thickness( 300±20)nm ,All the materials dissolved in distilled water by magnetic mixer for one hour .The optical parameters measured by using UV-VIS spectrometer ,and the structural parameters measured by X-ray diffraction .when measured the energy gap found that the value was decreases from 4.6 eV to 2.98 eV with doping .The refractive index ,extinction coefficient ,absorption coefficient ,real and imaginary dielectric constants of (PVA/PVP) are increasing with doping by V2O5 and wit
... Show MoreThin a-:H films were grown successfully by fabrication of designated ingot followed by evaporation onto glass slides. A range of growth conditions, Ge contents, dopant concentration (Al and As), and substrate temperature, were employed. Stoichiometry of the thin films composition was confirmed using standard surface techniques. The structure of all films was amorphous. Film composition and deposition parameters were investigated for their bearing on film electrical and optical properties. More than one transport mechanism is indicated. It was observed that increasing substrate temperature, Ge contents, and dopant concentration lead to a decrease in the optical energy gap of those films. The role of the deposition conditions on value
... Show MoreBaTiO3 thin films have been deposited on Si (111) and glass substrates by using pulsed laser deposition technique. The films were characterized by using X-ray diffraction, atomic force microscope and optical transmission spectra. The films growth on Si after annealing at 873K showed a polycrystalline nature, and exhibited tetragonal structure, while on glass substrate no growth was noticed at that temperature. UV-VIS transmittance measurements showed that the films are highly transparent in the visible wavelength region and near-infrared region for sample annealing on glass substrate. The optical gap of the film were calculated from the curve of absorption coefficient (αhν) 2 vs. hν and was found tobe 3.6 eV at substrate temperature 5
... Show MoreIn this work, chemical oxidation was used to polymerize conjugated polymer "Polypyrrole" at room temperature Graphene nanoparticles were added by in situ-polymerization to get (PPY-GN) nano. Optical and Electrical properties were studied for the nanocomposites. optical properties of the nanocomposites were studied by UV-Vis spectroscopy at wavelength range (200 -800 nm). The result showed optical absorption spectra were normally determined and the result showed that the maximum absorbance wave length at 280nm and 590nm. The optical energy gap has been evaluated by direct transition and the value has decreased from (2.1 eV for pure PPy) to (1.3 eV for 5 %wt. of GN). The optical constants such as the band tail width ΔE was evaluated, the
... Show MoreCdSe alloy has been prepared successfully from its high purity elements. Thin films of this alloy with different thicknesses (300,700)nm have been grown on glass substrates at room temperature under very low pressure (10-5)Torr with rate of deposition (1.7)nm/sec by thermal evaporation technique, after that these thin films have been heat treated under low pressure (10-2)Torr at (473,673)K for one hour. X-ray patterns showed that both CdSe alloy and thin films are polycrystalline and have the hexagonal structure with preferential orientation in the [100] and [002] direction respectively. The optical measurements indicated that CdSe thin films have allowed direct optical energy band gap, and it increases from (1.77- 1.84) eV and from
... Show MoreCdSe alloy has been prepared successfully from its high purity elements. Thin films of this alloy with different thicknesses (300,700)nm have been grown on glass substrates at room temperature under very low pressure (10-5)Torr with rate of deposition (1.7)nm/sec by thermal evaporation technique, after that these thin films have been heat treated under low pressure (10-2)Torr at (473,673)K for one hour. X-ray patterns showed that both CdSe alloy and thin films are polycrystalline and have the hexagonal structure with preferential orientation in the [100] and [002] direction respectively. The optical measurements indicated that CdSe thin films have allowed direct optical energy band gap, and it increases from (1.771.84) eV and from (1.6-1
... Show MoreNanoparticles of Pb1-xCdxS within the composition of 0≤x≤1 were prepared from the reaction of aqueous solution of cadmium acetate, lead acetate, thiourea, and NaOH by chemical co-precipitation. The prepared samples were characterized by UV-Vis spectroscopy(in the range 300-1100nm) to study the optical properties, AFM and SEM to check the surface morphology(Roughness average and shape) and the particle size. XRD technique was used to determine the crystalline structure, XRD technique was used to determine the purity of the phase and the crystalline structure, The crystalline size average of the nanoparticles have been found to be 20.7, 15.48, 11.9, 11.8, and 13.65 nm for PbS, Pb0.75Cd0.25S,
... Show More