This contribution aims to investigate volume-dependent thermal and mechanical properties of the two most studied phases of molybdenum nitride (c-MoN and h-MoN) by means of the quasi-harmonic approximation approach (QHA) via first-principles calculations up to their melting point and a pressure of 12 GPa. Lattice constants, band gaps, and bulk modulus at 0 K match corresponding experimental measurements well. Calculated Bader’s charges indicate that Mo–N bonds exhibit a more ionic nature in the cubic MoN phase. Based on estimated Gibbs free energies, the cubic phase presents thermodynamic stability higher than that detected for hexagonl, with no phase transition observed in the selected T–P conditions as detected experimentally. The elastic stiffness coefficients of MoN in hexagonal structure revealed that it is stable elastically; in contrast to the cubic structure. The temperature dependence on the bulk modulus is more profound on the dense cubic phase than on the hexagonal phase. Overall, the two considered structures of molybdenum nitride display very minimal harmonic effects, evidenced by the slight variation of thermal and mechanical properties with the increase of pressure and temperature. The optical conductivity of both phases near a zero photon energy coincides well with their metallic character inferred by their corresponding DOS curves. It is expected that the thermo-elastic properties of saturated molybdenum nitrides reported in this study will aid in the continuous pursuit to enhance their catalytic and mechanical utilizations.
In this research , the structural and optical properties of pure of cadmium oxide, pure (CdO) were studided thin films in a thermal evaporation in a vacuum depositing metal cadmium pure rules of the glass at room temperature (300K) and thickness (300 ± 20nm) and the time of deposition (1.25sec) was oxidation of thin films cadmium (Cd) record temperature (673k) for a period of one hour to the presence of air optical energy gap for direct electronic transitions were calculated (permitted) as a function of absorption coefficient and permeability and reversibility by recording the spectrum absorbance and permeability of the membrane the record
... Show MoreIn this research, the study effect of irradiation on structural and optical properties of thin film (CdO) by spray pyrolysis method, which deposited on glasses substrates at a thickness of (350±20)nm , The flow rate of solution was 5 ml/min and the substrate temperature was held constant at 400˚C.The investigation of (XRD) indicates that the (CdO) films are polycrystalline and type of cubic. The results of the measuring of each sample from grain size, micro strain, dislocation density and number of crystals the grain size decreasing after irradiation with gamma ray from(27.41, 26.29 ,23.63)nm . The absorbance and transmittance spectra have been recorded in the wavelength range (300-1100) nm in order to study the optical properties.
... Show MoreThe V2O5 films were deposited on glass substrates which produce using "radio frequency (RF)"power supply and Argon gas technique. The optical properties were investigated by, UV spectroscopy at "radio frequency" (RF) power ranging from 75 - 150 Watt and gas pressure, (0.03, 0.05 and 0.007 Torr), and substrate temperature (359, 373,473 and 573) K. The UV-Visible analysis shows that the average transmittance of all films in the range 40-65 %. When the thickness has been increased the transhumance was decreased from (65-40) %. The values of energy band gap were lowered from (3.02-2.9 eV) with the increase of thickness the films in relation to an increase in power, The energy gap decreased (2.8 - 2.7) eV with an increase in the pressure and
... Show MoreIn this work, we study the effect of doping Sn on the structural and optical properties of pure cadmium oxide films at different concentrations of Tin (Sn) (X=0.1,0.3 and 0.5) .The films prepared by using the laser-induced plasma at wavelength of laser 1064 nm and duration 9 ns under pressure reached to 2.5×10-2 mbar. The results of X-ray diffraction tests showed that the all prepared films are polycrystalline. As for the topography of the films surface, it was measured using AFM , where the results showed that the grain size increases with an increase in the percentage of doping in addition to an increase in the average roughness. The optical properties of all films have also been studied through the absorbance s
... Show MoreWe studied the changing of structural and optical properties of pure and Aluminum-doped ZnO thin films prepared by thermal evaporation technique on glass substrates at thickness (800±50)nm with changing of annealing temperatures ( 200,250,300 )℃ for one hour. The investigation of (XRD) indicates that the pure and doped ZnO thin films were polycrystalline of a hexagonal wurtzite structure with preferred orientation along (002) plane. The grain size was decreased with doping before annealing, but after annealing the grain size is increasing with the increase of annealing temperature for pure film whereas for the doped films with ratios 1 %, 2 % we found that the grain size is larger than that before annealing. The grain size
... Show MoreCr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.
The effect of 0.662MeV gamma radiation on the optical properties of the CdTe thin films was studied. 300nm thickness of CdTe samples were irradiated with doses (10, 20, 30,60krad) in room temperature. The absorption spectra for all the samples were recorded using UV- Visible spectrometer in order to calculate the energy gap, width of localized states and optical constants(refractive index, extinction coefficient, real and imaginary parts of dielectric constant). The optical energy gap was found to decrease from (1.53 to 1.48 eV), while the width of localized states increased from (1.34 to 1.49 eV) with the increasing of radiation dose. The behavior of energy gap with the irradiation dose makes the material a good candidate for dosimetry
... Show MoreIn this work, thin films of undoped and Al-doped CdO with (0.5, 1 and 2) wt.% were prepared by using thermal vacuum evaporation on glass substrate at room temperature. The optical absorption coefficient (α) of the films was determined from transmittance spectra in the range of wavelength (400-1100) nm. The spectral transmission and the optical energy band gap decrease from 75% and 2.24 eV to 20% and 2.1 eV respectively depending upon the Al content in the films, also our studies include the calculation of the optical constants (refractive index, extinction coefficient, real and imaginary part of dielectric constant) as a function of photon energy. It is evaluated that the optical band gap of
... Show MoreIn this work, pure and Ag-doped nickel oxide (NiO) thin films were deposited on glass substrates with different dopant concentrations (0.1, 0.2, 0.3 and 0.4 wt.%) by pulsed-laser deposition (PLD) technique at room temperature. These films were annealed at temperature of 450 °C. The structural and optical properties of the prepared thin films were studied. It was found that annealing process has lead to increase the transmittance of the deposited films. Also, the transmittance was found to increase with doping concentration of silver in the deposited NiO films. The optical energy gap was decreased from 3.5 to 3.2 eV as the doping concentration was increased to 0.4 %.