Face Recognition Systems (FRS) are increasingly targeted by morphing attacks, where facial features of multiple individuals are blended into a synthetic image to deceive biometric verification. This paper proposes an enhanced Siamese Neural Network (SNN)-based system for robust morph detection. The methodology involves four stages. First, a dataset of real and morphed images is generated using StyleGAN, producing high-quality facial images. Second, facial regions are extracted using Faster Region-based Convolutional Neural Networks (R-CNN) to isolate relevant features and eliminate background noise. Third, a Local Binary Pattern-Convolutional Neural Network (LBP-CNN) is used to build a baseline FRS and assess its susceptibility to deception by morphed images. Finally, morph detection and classification are conducted using the proposed SNN framework, which incorporates a novel feature fusion strategy based on Canonical Correlation Analysis (CCA) to enhance discriminative power. The model is trained and evaluated using publicly available Face Recognition Technology (FERET) and Face Recognition Grand Challenge (FRGC) datasets, comprising 1,030 real and 2,000 morphed images. Experimental results demonstrate that the proposed method significantly strengthens the resilience of FRS to morphing attacks, achieving a high detection accuracy of 99.9%. This confirms the model’s effectiveness in distinguishing between real and manipulated images with minimal errors.
Groundwater is an important resource that can be used for various purposes. Various factors can change the chemistry of the GW, such as the chemical composition of an aquifer as well as the leaching of human waste into groundwater. The study area is a barren land covered by some sabkhas, in addition to some agricultural fields. The study aims to assess groundwater quality for drinking purposes using the Water Quality Index. The groundwater is chemically heterogeneous and has a wide quality range from very poor to excellent. Evaporation appears to be the controlling factor among the other shallow waters, while relatively deep water is related to rock-soil dominance. Rocks, land use and land cover have helped control the groundwater q
... Show MoreThe most significant water supply, which is the basis of agriculture, industry and human and wildlife needs, is the river. In order to determine its suitability for drinking purposes, this study aims to measure the Water Quality Index (WQI) of the Tigris River in the Salah Al-Din Province (center of Tikrit), north of Baghdad. For ten (9) physio-chemical parameters, namely turbidity, total suspended sediments, PH, electrical conductivity, total dissolved solids, alkalinity, chloride, nitrogen as nitrate, sulphate, and then transported for examination to the laboratory, water samples were collected from 13 locations along the Tigris river. Using the weighted arithmetic index method, the WQI was measured and found to be 105,87 in up-stream, wh
... Show MoreThis paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
Groundwater can be assessed by studying water wells. This study was conducted in Al-Wafa District, Anbar Governorate, Iraq. The water samples were collected from 24 different wells in the study area, in January 2021. A laboratory examination of the samples was conducted. Geographical information systems technique was relied on to determine the values of polluting elements in the wells. The chemical elements that were measured were [cadmium, lead, cobalt and chromium]. The output of this research were planned to be spatial maps that show the distribution of the elements with respect to their concentrations. The results show a variation in the heavy elements concentrations at the studied area groundwater. The samples show different values
... Show MoreThe development that solar energy will have in the next years needs a reliable estimation of available solar energy resources. Several empirical models have been developed to calculate global solar radiation using various parameters such as extraterrestrial radiation, sunshine hours, albedo, maximum temperature, mean temperature, soil temperature, relative humidity, cloudiness, evaporation, total perceptible water, number of rainy days, and altitude and latitude. In present work i) First part has been calculated solar radiation from the daily values of the hours of sun duration using Angstrom model over the Iraq for at July 2017. The second part has been mapping the distribution of so
This research aims to examine the effectiveness of a teaching strategy based on the cognitive model of Daniel in the development of achievement and the motivation of learning the school mathematics among the third intermediate grade students in the light of their study of "Systems of Linear Equations”. The research was conducted in the first semester (1439/1440AH), at Saeed Ibn Almosaieb Intermediate School, in Arar, Saudi Arabia. A quasi-experimental design has been used. In addition, a (pre & post) achievement test (20 Questions) and a (pre & post) scale of learning motivation to the school mathematics (25 Items) have been applied on two groups: a control group (31Students), and an experimental group (29 Students). The resear
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreThe article discusses the spatial analysis of the chemical soil properties that is a key component of the agriculture ecosystem based on satellite images. The main objective of the present study is to measure the chemical soil properties (total dissolved salts (TDS), Electrical conductivity (EC), PH, and) and the spatial variability. On 13 November 2020 (wet season), a total of 12 soil samples were collected in the field through random sampling in the Sanam mountain-Al Zubair region south of Basra province, to contain its soil samples components of minerals and precious elements such as silica and sulfur. From experimental results, the soil sample in the sixth position has the highest concentration of TDS values, reached (5798.4
... Show More