In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction accuracy criterion and matching curve-fitting in this work demonstrated that if the residuals of the revised model are white noise, the forecasts are unbiased. Future work investigating robust hybrid model forecasting using fuzzy neural networks would be very interesting.
Most of World nations are striving to provide the necessary needs to protect their economic properties assets against natural or abnormal disasters that may be inflicted on such property and the means that used by such countries to reduce the damages is insurance, whereas insurance as a system that collects and distributes different risks into the group thus to achieve a social symbiosis between individuals. The system works to transfer the risks from the individual to the group and then distributes the losses to all members of the group.
According to the importance of the insurance sector and the need to develop it as well as working on improving its performance, this search aims to identify the ac
... Show More
This paper analyses the relationship between selected macroeconomic variables and gross domestic product (GDP) in Saudi Arabia for the period 1993-2019. Specifically, it measures the effects of interest rate, oil price, inflation rate, budget deficit and money supply on the GDP of Saudi Arabia. The method employs in this paper is based on a descriptive analysis approach and ARDL model through the Bounds testing approach to cointegration. The results of the research reveal that the budget deficit, oil price and money supply have positive significant effects on GDP, while other variables have no effects on GDP and turned out to be insignificant. The findings suggest that both fiscal and monetary policies should be fo
... Show MoreThe use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show MoreA paraffin wax and copper foam matrix were used as a thermal energy storage material in the double passes air solar chimney (SC) collector to get ventilation effect through daytime and after sunset. Air SC collector was installed in the south wall of an insulated test room and tested with different working angles (30o, 45o and 60o). Different SC types were used; single pass, double passes flat plate collector and double pass thermal energy storage box collector (TESB). A computational model based on the finite volume method for transient tw dimensional domains was carried out to describe the heat transfer and storage in the thermal energy storage material of collector. Also, equivalent specific heat metho
... Show MoreThe education sector suffers from many problems, including the scarcity of schools that can absorb the increasing number of students in light of the increasing population growth rate, as some regions suffer from a lack of opening of new schools or the expansion of existing schools to increase their capacity so that attention is required. The research sought to identify the level of maturity of project management at the research site (Building Department in Al-Karkh I/ Ministry of Education) Being responsible for educational projects and their implementation and to know that, the ten areas of the knowledge guide to project management PMBOK have been adopted according to the PM3 model (one of the models of maturity
... Show MoreTraumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental
... Show MoreIn this article, we developed a new loss function, as the simplification of linear exponential loss function (LINEX) by weighting LINEX function. We derive a scale parameter, reliability and the hazard functions in accordance with upper record values of the Lomax distribution (LD). To study a small sample behavior performance of the proposed loss function using a Monte Carlo simulation, we make a comparison among maximum likelihood estimator, Bayesian estimator by means of LINEX loss function and Bayesian estimator using square error loss (SE) function. The consequences have shown that a modified method is the finest for valuing a scale parameter, reliability and hazard functions.
Abstract
Binary logistic regression model used in data classification and it is the strongest most flexible tool in study cases variable response binary when compared to linear regression. In this research, some classic methods were used to estimate parameters binary logistic regression model, included the maximum likelihood method, minimum chi-square method, weighted least squares, with bayes estimation , to choose the best method of estimation by default values to estimate parameters according two different models of general linear regression models ,and different s
... Show More