Software testing is a vital part of the software development life cycle. In many cases, the system under test has more than one input making the testing efforts for every exhaustive combination impossible (i.e. the time of execution of the test case can be outrageously long). Combinatorial testing offers an alternative to exhaustive testing via considering the interaction of input values for every t-way combination between parameters. Combinatorial testing can be divided into three types which are uniform strength interaction, variable strength interaction and input-output based relation (IOR). IOR combinatorial testing only tests for the important combinations selected by the tester. Most of the researches in combinatorial testing applied the uniform and the variable interaction strength, however, there is still a lack of work addressing IOR. In this paper, a Jaya algorithm is proposed as an optimization algorithm engine to construct a test list based on IOR in the proposed combinatorial test list generator strategy into a tool called CTJ. The result of applying the Jaya algorithm in input-output based combinatorial testing is acceptable since it produces a nearly optimum number of test cases in a satisfactory time range.
The rise of edge-cloud continuum computing is a result of the growing significance of edge computing, which has become a complementary or substitute option for traditional cloud services. The convergence of networking and computers presents a notable challenge due to their distinct historical development. Task scheduling is a major challenge in the context of edge-cloud continuum computing. The selection of the execution location of tasks, is crucial in meeting the quality-of-service (QoS) requirements of applications. An efficient scheduling strategy for distributing workloads among virtual machines in the edge-cloud continuum data center is mandatory to ensure the fulfilment of QoS requirements for both customer and service provider. E
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreWith the recent growth of global populations, main roads in cities have witnessed an evident increase in the number of vehicles. This has led to unprecedented challenges for authorities in managing the traffic of ambulance vehicles to provide medical services in emergency cases. Despite the high technologies associated with medical tracks and advanced traffic management systems, there is still a current delay in ambulances’ attendance in times of emergency to provide patients with vital aid. Therefore, it is indispensable to introduce a new emergency service system that enables the ambulance to reach the patient in the least congested and shortest paths. However, designing an effici
The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme
... Show MoreThis paper presents the design, construction and investigates an experimental study of a parabolic Trough Solar Collector (PTSC). It is constructed of multi – piece glass mirror to form the parabolic reflector (1.8 m ? 2.8 m) its form were checked with help of a laser and carbon steel rectangular as receiver. Sun tracker has been developed (using two – axis) to track solar PTSC according to the direction of beam propagation of solar radiation. Using synthetic oil as a heat transfer its capability to heat transfer and load high temperature (?400 oc). The storage tank is fabricated with stainless steel of size 50 L. The experimental tests have been carried out in Baghdad climatic conditions (33.3o N, 44.4o E) during selective days of the
... Show MoreAlongside the development of high-speed rail, rail flaw detection is of great importance to ensure railway safety, especially for improving the speed and load of the train. Several conventional inspection methods such as visual, acoustic, and electromagnetic inspection have been introduced in the past. However, these methods have several challenges in terms of detection speed and accuracy. Combined inspection methods have emerged as a promising approach to overcome these limitations. Nondestructive testing (NDT) techniques in conjunction with artificial intelligence approaches have tremendous potential and viability because it is highly possible to improve the detection accuracy which has been proven in various conventional nondestr
... Show More