Preferred Language
Articles
/
BxaWBocBVTCNdQwCRTBH
Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting
...Show More Authors

The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized support vector regression model with a genetic algorithm (SVR-GA) over the other ML forecasting models for monthly river flow forecasting using 90%–10% data division. In addition, it was found to improve the accuracy in forecasting high flow events. The unique architecture of developed SVR-GA due to the ability of the GA optimizer to tune the internal parameters of the SVR model provides a robust learning process. This has made it more efficient in forecasting stochastic river flow behaviour compared to the other developed hybrid models.

Scopus Clarivate Crossref
View Publication
Publication Date
Wed Mar 20 2024
Journal Name
Journal Of Petroleum Research And Studies
Advanced Machine Learning application for Permeability Prediction for (M) Formation in an Iraqi Oil Field
...Show More Authors

Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Bio Web Of Conferences
Concepts of statistical learning and classification in machine learning: An overview
...Show More Authors

Statistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in c

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Some Estimation Methods Of GM(1,1) Model With Missing Data and Practical Application
...Show More Authors

This paper presents a grey model GM(1,1) of the first rank and a variable one and is the basis of the grey system theory , This research dealt  properties of grey model and a set of methods to estimate parameters of the grey model GM(1,1)  is the least square Method (LS) , weighted least square method (WLS), total least square method (TLS) and gradient descent method  (DS). These methods were compared based on two types of standards: Mean square error (MSE), mean absolute percentage error (MAPE), and after comparison using simulation the best method was applied to real data represented by the rate of consumption of the two types of oils a Heavy fuel (HFO) and diesel fuel (D.O) and has been applied several tests to

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 27 2022
Journal Name
2022 3rd Information Technology To Enhance E-learning And Other Application (it-ela)
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Application Artificial Forecasting Techniques in Cost Management (review)
...Show More Authors

For the duration of the last few many years many improvement in computer technology, software program programming and application production had been followed with the aid of diverse engineering disciplines. Those trends are on the whole focusing on synthetic intelligence strategies. Therefore, a number of definitions are supplied, which recognition at the concept of artificial intelligence from exclusive viewpoints. This paper shows current applications of artificial intelligence (AI) that facilitate cost management in civil engineering tasks. An evaluation of the artificial intelligence in its precise partial branches is supplied. These branches or strategies contributed to the creation of a sizable group of fashions s

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
A Survey on Arabic Text Classification Using Deep and Machine Learning Algorithms
...Show More Authors

    Text categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy th

... Show More
Scopus (14)
Crossref (4)
Scopus Crossref
Publication Date
Fri Aug 13 2021
Journal Name
Neural Computing And Applications
Integration of extreme gradient boosting feature selection approach with machine learning models: application of weather relative humidity prediction
...Show More Authors

View Publication
Scopus (55)
Crossref (45)
Scopus Clarivate Crossref
Publication Date
Sun Sep 03 2023
Journal Name
Iraqi Journal Of Computers, Communications, Control & Systems Engineering (ijccce)
Efficient Iris Image Recognition System Based on Machine Learning Approach
...Show More Authors

HM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023

View Publication
Publication Date
Sat Jan 19 2019
Journal Name
Artificial Intelligence Review
Survey on supervised machine learning techniques for automatic text classification
...Show More Authors

View Publication
Scopus (270)
Crossref (238)
Scopus Clarivate Crossref
Publication Date
Thu Dec 31 2015
Journal Name
Al-khwarizmi Engineering Journal
The Influence of Design and Technological Parameters on the MAF Process
...Show More Authors

Abstract

 Experimental work from Magnetic Abrasive Finishing (MAF) tests was carried out design parameters (amplitude, and number of cycle which are formed the shape of electromagnetic pole), and technological parameters (current, cutting speed, working gap, and finishing time) all have an influence on the mechanical properties of the surface layer in MAF process. This research has made to study the effect of design and technological parameters on the surface roughness (Ra), micro hardness (Hv) and material removal (MR) in working zone. A set of experimental tests has been planned using response surface methodology according to Taguchi matrix (36) with three levels and six factors

... Show More
View Publication Preview PDF