Preferred Language
Articles
/
BxZ8bIcBVTCNdQwCUEp8
OBJECT-BASED APPROACHES FOR LAND USE-LAND COVER CLASSIFICATION USING HIGH RESOLUTION QUICK BIRD SATELLITE IMAGERY (A CASE STUDY: KERBELA, IRAQ)
...Show More Authors

Land Use / Land Cover (LULC) classification is considered one of the basic tasks that decision makers and map makers rely on to evaluate the infrastructure, using different types of satellite data, despite the large spectral difference or overlap in the spectra in the same land cover in addition to the problem of aberration and the degree of inclination of the images that may be negatively affect rating performance. The main objective of this study is to develop a working method for classifying the land cover using high-resolution satellite images using object based method. Maximum likelihood pixel based supervised as well as object approaches were examined on QuickBird satellite image in Karbala, Iraq. This study illustrated that use of textural data during the object image classification approach can considerably enhance land use classification performance. Moreover, the results showed higher overall accuracy (86.02%) in the o object based method than pixel based (79.06%) in urban extractions. The object based performed much more capabilities than pixel based.

Scopus Crossref
View Publication
Publication Date
Mon Mar 31 2025
Journal Name
The Iraqi Geological Journal
Evaluation of Machine Learning Techniques for Missing Well Log Data in Buzurgan Oil Field: A Case Study
...Show More Authors

The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Sentiment analysis in arabic language using machine learning: Iraqi dialect case study
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iraqi Journal Of Laser
TREATMENT OF SYMPTOMATIC CERVICAL ECTOPY USING CO2 LASER (10600 nm) – Case Study
...Show More Authors

Background: Cervical ectopy advanced to erosion is one of the common conditions in gynecological and pathological study. It is considered as a physiologic condition resulting from columnar epithelium migration from the cervical canal into the vaginal portion of the cervix, in which no treatment for asymptomatic cervical ectropion can be given. Treatment can be accomplished via thermal cauterization (Electro cautery), Cryosurgery. CO2 laser therapy is another modality of treatment.

Objective: To study the effectiveness of CO2 laser therapy and evaluate it as a biomedical tool for the treatment of cervical ectropion. The study was done at Laser Medicine Research Clinic at the

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 30 2018
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Permeability Estimation for Carbonate Reservoir (Case Study/ South Iraqi Field)
...Show More Authors

     The heterogeneity nature of carbonate reservoirs shows sever scattering of the data, therefore, one has to be cautious in using the permeability- porosity correlation for calculating permeability unless a good correlation coefficient is available. In addition, a permeability- porosity correlation technique is not enough by itself since simulation studies also require more accurate tools for reservoir description and diagnosis of flow and non-flow units. Evaluation of reservoir characterization  was conducted by this paper for Mishrif Formation in south Iraqi oil field (heterogeneous carbonate reservoir), namely the permeability-porosity correlation, the hydraulic units (HU’s) and global hydraulic elements (GHE

... Show More
Crossref (3)
Crossref
Publication Date
Sun Sep 30 2018
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Permeability Estimation for Carbonate Reservoir (Case Study/ South Iraqi Field)
...Show More Authors

 

   The heterogeneity nature of carbonate reservoirs shows sever scattering of the data, therefore, one has to be cautious in using the permeability- porosity correlation for calculating permeability unless a good correlation coefficient is available. In addition, a permeability- porosity correlation technique is not enough by itself since simulation studies also require more accurate tools for reservoir description and diagnosis of flow and non-flow units.

Evaluation of reservoir characterization  was conducted by this paper for Mishrif Formation in south Iraqi oil field (heterogeneous carbonate reservoir), namely the permeability-porosity correlation, the hydraulic units (HU’s) an

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Dec 31 2023
Journal Name
Iraqi Journal Of Information And Communication Technology
EEG Signal Classification Based on Orthogonal Polynomials, Sparse Filter and SVM Classifier
...Show More Authors

This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Tue Oct 25 2022
Journal Name
Minar Congress 6
HANDWRITTEN DIGITS CLASSIFICATION BASED ON DISCRETE WAVELET TRANSFORM AND SPIKE NEURAL NETWORK
...Show More Authors

In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database

View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Advance Science And Technology
MR Images Classification of Alzheimer's Disease Based on Deep Belief Network Method
...Show More Authors

Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the

... Show More
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Arabic Speech Classification Method Based on Padding and Deep Learning Neural Network
...Show More Authors

Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (4)
Scopus Clarivate Crossref