Background: This in vitro study compares a novel calcium-phosphate etchant paste to conventional 37% phosphoric acid gel for bonding metal and ceramic brackets by evaluating the shear bond strength, remnant adhesive and enamel damage following water storage, acid challenge and fatigue loading. Material and Methods: Metal and ceramic brackets were bonded to 240 extracted human premolars using two enamel conditioning protocols: conventional 37% phosphoric acid (PA) gel (control), and an acidic calcium-phosphate (CaP) paste. The CaP paste was prepared from β-tricalcium phosphate and monocalcium phosphate monohydrate powders mixed with 37% phosphoric acid solution, and the resulting phase was confirmed using FTIR. The bonded premolars were exposed to four artificial ageing models to examine the shear bond strength (SBS), adhesive remnant index (ARI score), with stereomicroscopic evaluation of enamel damage. Results: Metal and ceramic control subgroups yielded significantly higher (p ˂ 0.05) SBS (17.1-31.8 MPa) than the CaP subgroups (11.4-23.8 MPa) post all artificial ageing protocols, coupled with higher ARI scores and evidence of enamel damage. In contrast, the CaP subgroups survived all artificial ageing tests by maintaining adequate SBS for clinical performance, with the advantages of leaving unblemished enamel surface and bracket failures at the enamel-adhesive interface. Conclusions: Enamel conditioning with acidic CaP pastes attained adequate bond strengths with no or minimal adhesive residue and enamel damage, suggesting a suitable alternative to the conventional PA gel for orthodontic bonding.
The research involved attempt to inhibit the corrosion of Al-Si-Cu alloy in 2.5x10-3 mol.dm-3 NaOH solution (pH=11.4) by addition of six different inhibitors with three concentrations (1x10-3, 1x10-2, and 0.1 mol.dm-3). These inhibitors include three organic materials (sodium acetate, sodium benzoate, and sodium oxalate) and three inorganic materials (sodium chromate, disodium phosphate, and sodium sulphate). The data that concerning polarization behaviour are calculates which include the corrosion potential (Ecorr) and current density (icorr), cathodic and anodic Tafel slopes (bc & ba), and polarization resistance (Rp). Protection efficiency (P%) and activation energy (Ea) values were calculated for inhibition by the six inhibitors. The
... Show MoreThe main aim of image compression is to reduce the its size to be able for transforming and storage, therefore many methods appeared to compress the image, one of these methods is "Multilayer Perceptron ". Multilayer Perceptron (MLP) method which is artificial neural network based on the Back-Propagation algorithm for compressing the image. In case this algorithm depends upon the number of neurons in the hidden layer only the above mentioned will not be quite enough to reach the desired results, then we have to take into consideration the standards which the compression process depend on to get the best results. We have trained a group of TIFF images with the size of (256*256) in our research, compressed them by using MLP for each
... Show MoreIn this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi
... Show MorePredicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be
... Show MoreBackground: To investigate the effect of different types of storage media on enamel surface microstructure of avulsed teeth by using atomic force microscope.Materials and methods : Twelve teeth blocks from freshly extracted premolars for orthodontic treatment were selected . The study samples were divided into three groups according to type of storage media :A-egg white , B- probiotic yogurt , and C-bovine milk . All the samples were examined for changes in surface roughness and surface granularity distribution using atomic force microscope, at two periods: baseline, and after 8 hours of immersing in the three types of storage media. Results: Milk group had showed a significant increase in the mean of the roughness values at
... Show MoreBackground: The roles of AI in the academic community continue to grow, especially in the enhancement of learning outcomes and the improvement of writing quality and efficiency. Objectives: To explore in depth the experience of senior pharmacy students in using artificial intelligence for academic purposes. Methods: This qualitative study included face-to-face individual interviews with senior pharmacy students from March to May 2023 using a pre-planned interview guide of open-ended questions. All interviews were audio-recorded. Thematic analysis was used to analyze the data. Results: The results were obtained from 15 in-depth face-to-face interviews with senior pharmacy students (5th and 4th years). Eight participants were male, and seven
... Show MoreBackground: The roles of AI in the academic community continue to grow, especially in the enhancement of learning outcomes and the improvement of writing quality and efficiency. Objectives: To explore in depth the experience of senior pharmacy students in using artificial intelligence for academic purposes. Methods: This qualitative study included face-to-face individual interviews with senior pharmacy students from March to May 2023 using a pre-planned interview guide of open-ended questions. All interviews were audio-recorded. Thematic analysis was used to analyze the data. Results: The results were obtained from 15 in-depth face-to-face interviews with senior pharmacy students (5th and 4th years). Eight participants were male, an
... Show MoreSurvival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show More