Non-thermal or cold plasma create many reactive species and charged particles when brought into contact with plant extracts. The major constituents involve reactive oxygen species, reactive nitrogen species and plasma ultra-violets. These species can be used to synthesize biologically important nanoparticles. The current study addressed the effect of the green method-based preparation approach on the volumetric analysis of Zn nanoparticles. Under different operating conditions, the traditional thermal method and the microwave method as well as the plasma generation in dielectric barrier discharge reactor were adopted as a preparation approach in this study. The results generally show that the type of method used plays an important role in determining the size of the zinc particles produced. The traditional and microwave method stimulated the formation of clusters and agglomerates of Zn nanoparticles by effect of temperature parameter. As an example, it was noted that the lowest average diameter was obtained at 50 °C, which was 18.77 nm compared with 30.07, 23, 31, and 25.27 nm in diameter for particles generated with other temperatures of 30, 60, 70, and 80 °C respectively. These formations can occur at relatively low temperature at the expense of the formation of irregular particles. However, the weights of pre-prepared Petroselinum crispum seeds, and the ratio of the extract of P. crispum seeds to the salt, are factors that may play an important role in determining the size of the Zn nanoparticles. The current study has also shown that the highest percentage of generated nanoparticles was obtained with the cold plasma method under moderate operating conditions with the advantage of the economic factor. In addition, the Zn nanoparticles synthesized by cold plasma method in 10 min in all concentrations showed more inhibition effect as antifungal against Candida albicans.
Background: The treatment of schizophrenia typically involves the use of olanzapine (OLZ), a typical antipsychotic drug that has poor oral bioavailability due to its low solubility and first-pass effect. Objective: To prepare and optimize OLZ as nanoparticles for transdermal delivery to avoid problems with oral administration. Methods: The nanoprecipitation technique was applied for the preparation of eight OLZ nanoparticles by using different polymers with various ratios. Nanoparticles were evaluated using different methods, including particle size, polydispersity index (PDI), entrapment efficiency (EE%), zeta potential and an in vitro release study. The morphology was evaluated by a field emission scanning electron microscope (F
... Show MoreRecently, some prostate cancer patients have acquired resistance to the second -generation drugs (anzalutamide and apalutamide) prescribed for the treatment of this disease due to the emergence of the F876L mutation, which represents a challenge to modern medicine. In this study, a new series of 2-thiohydantoin derivatives were prepared through the reaction of different derivatives of maleimide (1c-4c) with isothiocyanate derivatives. The prepared compounds were diagnosed using FT-IR,1H-NMR ,13C-NMR, Mass spectra. The prepared series compounds has been studied against prostate cancer cells. The MTT assay was used to determine the activity of the prepared compounds against prostate cancer cells. The da
... Show MoreThis paper presents the study and analysis, analytically and numerical of circular cylindrical shell pipe model, under variable loads, transmit fluid at the high velocity state (fresh water). The analytical analysis depended on the energy observation principle (Hamilton Principle), where divided all energy in the model to three parts , strain energy, kinetic energy and transmitted energy between flow and solid (kinetic to potential energy). Also derive all important equations for this state and approach to final equation of motion, free and force vibration also derived. the relations between the displacement of model function of velocity of flow, length of model, pipe thickness, density of flowed with location coordinate x-axis and angle
... Show MoreCdS films were prepared by thermal evaporation technique at thickness 1 µm on glass substrates and these films were doped with indium (3%) by thermal diffusion method. The electrical properties of these have been investigated in the range of diffusion temperature (473-623 K)> Activation energy is increased with diffusion temperature unless at 623 K activation energy had been decreased. Hall effect results have shown that all the films n-type except at 573 and 623 K and with increase diffusion temperature both of concentration and mobility carriers were increased.
Sb2S3 thin films have been prepared by chemical bath deposition on a glas sub Absorbance and transmittance spectra were recorded in the wavelength range (30-900) nm. The effects of thickness on absorption coefficient, reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were estimated. It was found that the reflectivity, absorption coefficient , extinction coefficient, real part of dielectric constant and refractive index, all these parameters decrease as the thickness increased, while the imaginary part of the dielectric constant increase as the thickness incre
... Show MoreThe specifications of lubricating oil are fundamentally the final product of materials that have been added for producing the desired properties. In this research, spherical nanoparticles copper oxide (CuO) and titanium oxides (TiO2) are added to SAE 15W40 engine oil to study the thermal conductivity, stability, viscosity of nano-lubricants, which are prepared at different concentrations of 0.1%, 0.2%, 0.5%, and 1% by weight, and also their pour point, and flash point as five quality parameters. The obtained results show that CuO nanoparticles in all cases, give the best functionality and effect on engine oil with respect to TiO2. With 0.1 wt. % concentration, the thermal conductivity of CuO/oil and TiO2/
... Show MoreBackground: This in vitro study was carried out to evaluate the effects of various veneering dentin ceramic thicknesses and repeated firings on the color of lithium disilicate glass-ceramic (IPS e.max Press) and zirconium-oxide (IPS ZirCAD) all-ceramic systems, measured by clinical spectrophotometers (Easyshade Advance 4.0) . Materials and methods: The 72specimens cube-shaped have the dimension of about 11 mm in width, 14 mm in length, 1mm in thickness, these cores divided into 3 groups according to the type of material each group have (24)core specimens. Each group had been divided into three sub-groups (each having 8 specimens) according to veneering with dentin ceramic thicknesses: as 0.5, 1, or 2 mm (n=8). IPS e.max press and ZirCAD c
... Show MoreThe study included adding antimony oxide to mixtures of coating metal surfaces (Enameling), after it was selected ceramic materials used in the coating metal pieces of the type of steel and cast iron in two layers. The first is called a ground coat and the second is a cover coat.
Ceramic materials layer for ground coat have been melted down in
platinum crucible at a temperature of 1200oC to prepare the glass
mixture (Frit). It was coated on metals at a temperature of 780oC for
two minutes, while the second layer was prepared glass mixture
(Frit) at a temperature of 1200oC, but was coated at a temperature of
760oC for two minutes.
Underwent tests crystalline state of powders (Frits) and enameled samples using X-ray di
In the present work, silver nanoparticles were prepared. Nonlinear optical properties and
optical limiting of silver nanoparticles were investigated.Standard chemical synthesis method was used at
diffrent weight ratio(0.038, 0.058 and 0.078) of silver nitrate. Several testing were done to obtain the
characteristics of the sample. Z-Scan experiments were performed using 30 ns Q-switched Nd:YAG
laser at 1064 nm and 532 nm at different intensities. The results showed that the nonlinear refractive
index is directly proportional to the input intensities, which caused by the self-focusing of the material.
In addition, the optical limiting behavior has been studied. The results showed that the sample could be
used as an opt
This study was aimed to assess the efficiency of N.oleander to remove heavy metals such as Copper (Cu) from wastewater. A toxicity test was conducted outdoor for 65-day to estimate the ability of N.oleander to tolerate Cu in synthetic wastewater. Based on a previous range-finding test, five concentrations were used in this test (0, 50, 100, 300, 510 mg/l). The results showed that maximum values of removal efficiency was found 99.9% on day-49 for the treatment 50 mg/l. Minimum removal efficiency was 94% day-65 for the treatment of 510 mg/l. Water concentration was within the permissible limits of river conservation and were 0.164 at day-35 for the 50 mg/l treatment, decreased thereafter until the end of the observation, and 0.12 at d
... Show More