The main intention of this study was to investigate the development of a new optimization technique based on the differential evolution (DE) algorithm, for the purpose of linear frequency modulation radar signal de-noising. As the standard DE algorithm is a fixed length optimizer, it is not suitable for solving signal de-noising problems that call for variability. A modified crossover scheme called rand-length crossover was designed to fit the proposed variable-length DE, and the new DE algorithm is referred to as the random variable-length crossover differential evolution (rvlx-DE) algorithm. The measurement results demonstrate a highly efficient capability for target detection in terms of frequency response and peak forming that was isolated from noise distortion. The modified method showed significant improvements in performance over traditional de-noising techniques.
Linear programming currently occupies a prominent position in various fields and has wide applications, as its importance lies in being a means of studying the behavior of a large number of systems as well. It is also the simplest and easiest type of models that can be created to address industrial, commercial, military and other dilemmas. Through which to obtain the optimal quantitative value. In this research, we dealt with the post optimality solution, or what is known as sensitivity analysis, using the principle of shadow prices. The scientific solution to any problem is not a complete solution once the optimal solution is reached. Any change in the values of the model constants or what is known as the inputs of the model that will chan
... Show MoreIn this paper we used frequentist and Bayesian approaches for the linear regression model to predict future observations for unemployment rates in Iraq. Parameters are estimated using the ordinary least squares method and for the Bayesian approach using the Markov Chain Monte Carlo (MCMC) method. Calculations are done using the R program. The analysis showed that the linear regression model using the Bayesian approach is better and can be used as an alternative to the frequentist approach. Two criteria, the root mean square error (RMSE) and the median absolute deviation (MAD) were used to compare the performance of the estimates. The results obtained showed that the unemployment rates will continue to increase in the next two decade
... Show MoreIn this paper the definition of fuzzy normed space is recalled and its basic properties. Then the definition of fuzzy compact operator from fuzzy normed space into another fuzzy normed space is introduced after that the proof of an operator is fuzzy compact if and only if the image of any fuzzy bounded sequence contains a convergent subsequence is given. At this point the basic properties of the vector space FC(V,U)of all fuzzy compact linear operators are investigated such as when U is complete and the sequence ( ) of fuzzy compact operators converges to an operator T then T must be fuzzy compact. Furthermore we see that when T is a fuzzy compact operator and S is a fuzzy bounded operator then the composition TS and ST are fuzzy compact
... Show MoreNecessary and sufficient conditions for the operator equation I AXAX n*, to have a real positive definite solution X are given. Based on these conditions, some properties of the operator A as well as relation between the solutions X andAare given.
The objective of the study is to demonstrate the predictive ability is better between the logistic regression model and Linear Discriminant function using the original data first and then the Home vehicles to reduce the dimensions of the variables for data and socio-economic survey of the family to the province of Baghdad in 2012 and included a sample of 615 observation with 13 variable, 12 of them is an explanatory variable and the depended variable is number of workers and the unemployed.
Was conducted to compare the two methods above and it became clear by comparing the logistic regression model best of a Linear Discriminant function written
... Show MoreAbstract
This research deals will the declared production planning operation in the general company of planting oils, which have great role in production operations management who had built mathematical model for correct non-linear programming according to discounting operation during raw materials or half-made materials purchasing operation which concentration of six main products by company but discount included just three products of raw materials, and there were six months taken from the 1st half of 2014 as a planning period has been chosen . Simulated annealing algorithm application on non-linear model which been more difficulty than possible solution when imposed restric
... Show MoreJPEG is most popular image compression and encoding, this technique is widely used in many applications (images, videos and 3D animations). Meanwhile, researchers are very interested to develop this massive technique to compress images at higher compression ratios with keeping image quality as much as possible. For this reason in this paper we introduce a developed JPEG based on fast DCT and removed most of zeros and keeps their positions in a transformed block. Additionally, arithmetic coding applied rather than Huffman coding. The results showed up, the proposed developed JPEG algorithm has better image quality than traditional JPEG techniques.
The Internet is providing vital communications between millions of individuals. It is also more and more utilized as one of the commerce tools; thus, security is of high importance for securing communications and protecting vital information. Cryptography algorithms are essential in the field of security. Brute force attacks are the major Data Encryption Standard attacks. This is the main reason that warranted the need to use the improved structure of the Data Encryption Standard algorithm. This paper proposes a new, improved structure for Data Encryption Standard to make it secure and immune to attacks. The improved structure of Data Encryption Standard was accomplished using standard Data Encryption Standard with a new way of two key gene
... Show MoreAssociation rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.