Two methods have been applied for the spectrophotometric determination of atropine, in
bulk sample and in dosage form. The methods are accurate, simple, rapid, inexpensive and
sensitive. The first method depending on the extraction of the formed ion-pair complex with
bromphenol blue (BPB) as a chromogenic reagent in chloroform, use phthalate buffer of pH
3.0; which showed absorbance maxima at 413 nm against reagent blank. The calibration
graph is linear in the ranges of 0.5-40 µg.mL
-1
with detection limit of 0.363µg.mL
-1
. The
second method depending on the measure of the absorbance maxima of the formed charge-transfer complex with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) at 457 nm against
Simple and sensitive batch and flow injection methods (normal and reverse flow injection analysis (nFIA and rFIA)) for spectrophotometric determination of vancomycin hydrochloride (VHC) in pharmaceutical preparations were proposed and optimized. Both methods are based on the oxidative - coupling reaction between vancomycin hydrochloride and 2,4-Dinitrophenylhydrazine (DNPH) in the presence of sodium periodate in alkaline medium to form a yellow water-soluble product that is stable and has a maximum absorption at 461 nm. Beer’s law was obeyed over the range of 1- 40, 0.5-120 and 0.5-150 μg.mL-1; the limits of detection were 0.537, 0.0823 and 0.233 μg.mL-1 for batch, normal and reverse flow injection methods respectively. The sampling
... Show MoreA simple, and rapid spectrophotometric method for the estimation of paracetamol has been developed. The methods is based on diazotisation of 2,4-dichloroaniline followed by a coupling reaction with paracetamol in sodium hydroxide medium. All variables affecting the reaction conditions were carefully studied. Beer's law is obeyed in the concentration range of 4-350 ?gml?1 at 490 nm .The method is successfully employed for the determination of paracetamol in pharmaceutical preparations. No interferes observed in the proposed method. Analytical parameters such as accuracy and precision have been established for the method and evaluated statistically to assess the application of the method.
A simple, fast, and sensitive batch and flow injection spectrophotometric
methods have been developed for the determination of clonazepam(CZP) in pure
form and in pharmaceutical preparations. The proposed methods are based on the
oxidative coupling reaction of the reduced clonazepam using Zn powders and conc.
HCl with payrocatechol and in the presence of ferric sulphate. The resulting reddish
colored product had a maximum absorbance at 515 nm. The optimum reaction
conditions and other analytical parameters have been evaluated . The linear ranges
for the batch and FI methods determination of CZP were 0.5-32, 50-400 μg mL-1
and the detection limits were 0.193, 22.60 μg mL-1 for both methods respectively.
Statis
A newly developed analytical method characterized by its speed and sensitivity for the determination of metoclopramide hydrochloride (MCP-HCl) in pure and pharmaceutical preparations via absorbance measurement by Ayah 6SX1-T-2D Solar cell-CFI Analyser. The method is based on the oxidation of the drug with Ce(IV)sulfate in acidic medium to form a red color species which determined using homemade Ayah 6SX1-T-2D Solar cell . Chemical and physical parameters were studied and optimized. The calibration graph was linear in the range of 0.05- 16 mMol.LP-1Pwith correlation coefficient r = 0.9855. The limit of detection(S/N = 3) 0.332 μg/sample from the step wise dilution for the minimum concentration in the linear dynamic ranged of the calibrat
... Show MoreA simple, rapid spectrophotometric method has been established for the determination of chlorpromazine hydrochloride (CPZ) in its pure form and in a tablet formulations. The suggested method is based on the oxidative coupling reaction with4-nitroainlline using KIO3 in acidic solution to produce a violet colored product with maximum absorption at λ=526 nm.The analytical data obtained throughout this study could be summarid as follows: 1ml of 1M HCl (pH=2.2), 1 ml of 4-nitroanilline (1x10-2M), and 1.5ml of (1x10-2)KIO3 per 25 ml reaction medium. The order of a
... Show MoreA simple, rapid and sensitive spectrophotometric method has been developed for the determination of captopril in aqueous solution. The method is based on reaction of captopril with 2,3-dichloro 1,4- naphthoquinon(Dichlone) in neutral medium to form a stable yellow colored product which shows maximum absorption at 347 nm with molar absorptivity of 5.6 ×103 L.mole-1. cm-1. The proposed method is applied successfully for determination of captopril in commercial pharmaceutical tablets.
A UV-Vis spectrophotometry method was developed for the determination of metoclopramide hydrochloride in pure and several pharmaceutical preparations, such as Permosan tablets, Meclodin syrups, and Plasil ampoules. The method is based on the diazotization reaction of metoclopramide hydrochloride with sodium nitrate and hydrochloric acid to yield the diazonium salt, which is then reacted with 3,5-dimethyl phenol in the presence of sodium hydroxide to form a yellow azo dye. Calibration curves were linear in the range from 0.3 to 6.5 µg/mL, with a correlation coefficient of 0.9993. The limits of detection and quantification were determined and found to be 0.18 and 0.61 µg/mL, respectively. Accuracy and precision were also determined b
... Show MoreA simple, accurate, and cost-efficient UV-Visible spectrophotometric method has been developed for the determination of naphazoline nitrate (NPZ) in pure and pharmaceutical formulations. The suggested method was based on the nucleophilic substitution reaction of NPZ with 1,2-naphthoquinone-4-sulfonate sodium salt in alkaline medium at 80°C to form an orange/red-colored product of maximum absorption (λmax) at 483 nm. The stoichiometry of the reaction was determined via Job's method and limiting logarithmic method, and the mechanism of the reaction was postulated. Under the optimal conditions of the reaction, Beerʼs law was obeyed within the concentration range 0.5–50 μg/mL, the molar absorptivity value (ε) was 5766.5 L × mol–1 × c
... Show More