In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured. The manufactured physical model could be used to simulate steady state harmonic load at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into considerations include loading frequency, size of footing and different soil conditions. The footing parameters were related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used (100 200 12.5 mm) and (200 400 5.0 mm). The footing was tested in all parameters at the surface and at 50 mm depth below model surface. Meanwhile the investigated parameters of the soil condition included dry and saturated sand for two relative densities 30% and 80%. The response of the soil to dynamic loading includes measuring the stresses inside the soil using piezoelectric sensors as well as measuring the excess pore water pressure by using pore water pressure transducers. It was found that the rate of increase in excess pore water pressure ratio decreased remarkably at a depth of 0.5 B–1.5 B (B is the footing width) for medium and loose dense sand, respectively. Moreover, excess pore water pressure ratio increases with increasing the eccentricity of dynamic load. The generated pore water pressure is always greater under the point of load application. Its value reduces with a certain percentages at any point away from the point of load application. In addition, the rate of variation of pore water pressure with eccentricity for loose sand is less than that for medium dense sand. The dynamic stress increments resulting from the dynamic load on the foundation reduce with depth. In addition, the dynamic stresses under the corner are slightly greater than the stresses at the center by a percentage of about 10.0%. The excess pore water pressure increases with increasing the relative density of the sand, the amplitude of dynamic loading and the operating frequency. In contrast, the rate of dissipation of the excess pore water pressure during dynamic loading is more in the case of loose sand.
Piled raft is commonly used as foundation for high rise buildings. The design concept of piled raft foundation is to minimize the number of piles, and to utilize the entire bearing capacity. High axial stresses are therefore, concentrated at the region of connection between the piles and raft. Recently, an alternative technique is proposed to disconnect the piles from the raft in a so called unconnected piled raft (UCPR) foundation, in which a compacted soil layer (cushion) beneath the raft, is usually introduced. The piles of the new system are considered as reinforcement members for the subsoil rather than as structural members. In the current study, the behavior of unconnected piled rafts systems has been studie
... Show MoreThe huge amount of documents in the internet led to the rapid need of text classification (TC). TC is used to organize these text documents. In this research paper, a new model is based on Extreme Machine learning (EML) is used. The proposed model consists of many phases including: preprocessing, feature extraction, Multiple Linear Regression (MLR) and ELM. The basic idea of the proposed model is built upon the calculation of feature weights by using MLR. These feature weights with the extracted features introduced as an input to the ELM that produced weighted Extreme Learning Machine (WELM). The results showed a great competence of the proposed WELM compared to the ELM.
The main objective of this study is to experimentally investigate the effect of the CMC polymeric drag reducer on the pressure drop occurred along the annulus of the wellbore in drilling operation and investigate the optimum polymer concentration that give the minimum pressure drop. A flow loop was designed for this purpose consist from 14 m long with transparent test section and differential pressure transmitter that allows to sense and measure the pressure losses along the test section. The results from the experimental work show that increasing in polymer concentration help to reduce the pressure drop in annulus and the optimum polymer concentration with the maximum drag reducing is 0.8 kg/m3. Also increasing in flow rate a
... Show MoreGypseous soils are considered one of the most problematic soils. The skirted foundation is an alternative technology that works to improve the bearing capacity and reduce settlement. This paper investigates the use of square skirted foundations resting on gypseous soil subjected to concentric and eccentric vertical load with eccentricity values of 4, 8, and 17 mm in 16 experimental model tests. To obtain the results by using this type of foundation, a small-scale physical model was designed to obtain the load–settlement behavior of the square skirted foundation; the dimension of the square footing is 100 mm × 100 mm with 1 mm thickness, the skirt depth (
In this research, the program SEEP / W was used to compute the value of seepage through the homogenous and non-homogeneous earth dam with known dimensions. The results show that the relationship between the seepage and water height in upstream of the dam to its length for saturated soil was nonlinear when the dam is homogenous. For the non-homogeneous dam, the relationship was linear and the amount of seepage increase with the height of water in upstream to its length. Also the quantity of seepage was calculated using the method of (Fredlund and Xing, 1994) and (Van Genuchten, 1980) when the soil is saturated – unsaturated, the results referred to that the higher value of seepage when the soil is saturated and the lowe
... Show MoreRotating blades are the important parts in gas turbines. Hence, an accurate mathematical estimation (F.E.M) of the stresses and deformations characteristics was required in the design applications to avoid failure. In recent year’s there are researchers interest in the effect of temperature on solid bodies has greatly increased, The main of this study investigated the thermal and rotational effects. So, the thermal stresses due to high pressure and temperature are studies, also determine the steady state stresses and deformations of rotating blades due to mechanical effect. Many parameters such as thickness and centre of rotating are investigated in this paper. The
... Show MoreField experiment conducted to measured Slippage, Effective field capacity, Field Efficiency, Soil Volume Disturbed and Specific Productivity Tillage in silt clay loam soil with depth 18 cm in Baghdad- Iraq. Split – split plot design under randomized complete block design with three replications using Least Significant Design 5 % was used. Three factor used in this experiment included Two types of plows included Chisel and Disk plows which represented main plot , Three Tires Inflation Pressure was second factor included 1.1 ,1.8 and 2.7 Bar, and Three forward speeds of the tillage was third factor included 2.35 , 4.25 and 6.50 km/hr. Result show chisel plow recorded best parameters performance
This research shows the experimental results of the bending moment in a flexible and rigid raft foundation rested on dense sandy soil with different embedded depth throughout 24 tests. A physical model of dimensions (200mm*200mm) and (320) mm in height was constructed with raft foundation of (10) mm thickness for flexible raft and (23) mm for rigid raft made of reinforced concrete. To imitate the seismic excitation shaking table skill was applied, the shaker was adjusted to three frequencies equal to (1Hz,2Hz, and 3Hz) and displacement magnitude of (13) mm, the foundation was located at four different embedment depths (0,0.25B = 50mm,0.5B = 100mm, and B = 200mm), where B is the raft width. Generally, the maximum bending
... Show MoreThis work investigates experimentally the effect of using a skirt with a square foundation of 100 mm width resting on dry gypseous soil (i.e., loose soil with 33% relative density), and subjected to an inclined load. Previous works did not study the use square skirted foundation rested on gypseous soil and subjected to inclined load. The investigated soil was brought from Tikrit city with 59% gypsum content. Standard physical and chemical tests on selected soil were carried out. Model laboratory tests were carried out to determine the effect of using a skirt with a square foundation on the load-settlement behavior of gypseous soil and subjected to inclined load with various Skirt depth (Ds) to foundation width (B) ratio
... Show MorePhosphorus is usually the limiting nutrient for eutrophication in inland receiving waters; therefore, phosphorus concentrations must be controlled. In the present study, a series of jar test was conducted to evaluate the optimum pH, dosage and performance parameters for coagulants alum and calcium chloride. Phosphorus removal by alum was found to be highly pH dependent with an optimum pH of 5.7-6. At this pH an alum dosage of 80 mg/l removed 83 % of the total phosphorus. Better removal was achieved when the solution was buffered at pH = 6. Phosphorus removal was not affected by varying the slow mixing period; this is due to the fact that the reaction is relatively fast.
The dosage of calcium chloride and pH of solution play an importa