In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured. The manufactured physical model could be used to simulate steady state harmonic load at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into considerations include loading frequency, size of footing and different soil conditions. The footing parameters were related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used (100 200 12.5 mm) and (200 400 5.0 mm). The footing was tested in all parameters at the surface and at 50 mm depth below model surface. Meanwhile the investigated parameters of the soil condition included dry and saturated sand for two relative densities 30% and 80%. The response of the soil to dynamic loading includes measuring the stresses inside the soil using piezoelectric sensors as well as measuring the excess pore water pressure by using pore water pressure transducers. It was found that the rate of increase in excess pore water pressure ratio decreased remarkably at a depth of 0.5 B–1.5 B (B is the footing width) for medium and loose dense sand, respectively. Moreover, excess pore water pressure ratio increases with increasing the eccentricity of dynamic load. The generated pore water pressure is always greater under the point of load application. Its value reduces with a certain percentages at any point away from the point of load application. In addition, the rate of variation of pore water pressure with eccentricity for loose sand is less than that for medium dense sand. The dynamic stress increments resulting from the dynamic load on the foundation reduce with depth. In addition, the dynamic stresses under the corner are slightly greater than the stresses at the center by a percentage of about 10.0%. The excess pore water pressure increases with increasing the relative density of the sand, the amplitude of dynamic loading and the operating frequency. In contrast, the rate of dissipation of the excess pore water pressure during dynamic loading is more in the case of loose sand.
This study investigated the effect of applying an external magnetic field on the characteristics of laser-induced plasma, such as its parameters plasma, magnetization properties, emission line intensities, and plasma coefficients, for plasma induced from zinc oxide: aluminum composite (ZO:AL) at an atomic ratio of 0.3 %. Plasma properties include magnetization and emission line intensities. The excitation was done by a pulsed laser of Nd:YAG with 400 mJ energy at atmospheric pressure. Both the electron temperature and number density were determined with the help of the Stark effect principle and the Boltzmann-Plot method. There was a rise in the amount of (ne) and (Te) that was produced
... Show MoreAbstract
The experiment has been carried out in the Syrian National Commission of Biotechnology, during the growing season 2018/2019, to study the effect of abiotic stresses (salinity and osmotic stresses) on the activity of some antioxidant enzymes and biochemical traits in Catharanthus roseus. The experiment has been laid according to (CRD) with three replications. The seeds have been sterilized by NaOCl solution (0.5% v/v), then planted on MS medium. Plantlets have been moved to MS medium enriched with NAA (1 mg.L-1) and BA (2 mg.L-1). The callus has been initiated from leaves using MS medium containing NAA (1 mg L-1) and KIN (2 mg.L-1). After 60 days, callus
... Show MoreThis paper presents a numerical analysis of the piled-raft foundation (PRF) based on the actual behavior of supporting piles. The raft was modeled as a thin plate, while the piles were modeled as springs in different ways. This research also aims to propose an analytical model of piles based on actual behavior at fieldwork. The results proved that the structural behavior of raft member can be improved through utilizing the actual behavior of supporting piles. When the piles were modeled as non-linear stiffness springs, settlements and bending stresses of raft foundation were reduce marginally as compared with those obtained from piles with linear stiffness springs.
Nanoparticles of humic acid and iron oxide were impregnated on the inert sand to produce sorbent for treating groundwater contained of cadmium and copper ions by technology of permeable reactive barrier (PRB). Sewage sludge was the source of the humic acid to prepare the coated sand by humic acid—iron oxide (CSHAIO) sorbent; so, this work is consistent with sustainable development. For 10 mg/L metal concentration, batch tests at speed of 200 rpm signified that the removal efficiencies are greater than 90% at sorbent dosage 0.25 g/ 50 mL, pH 6 and contact time 1 h. The kinetic data was well described by the Pseudo first-order model indicating that physicosorption is the predominant mechanism. The maximum adsorption capacities (qmax) were c
... Show MoreThe variation in wing morphological features was investigated using geometric morphometric technique of the Sand Fly from two Iraqi provinces Babylon and Diyala . We distributed eleven landmarks on the wings of Sand Fly species. By using the centroid size and shape together, all species were clearly distinguished. It is clear from these results that the wing analysis is an essential method for future geometric morphometry studies to distinguish the species of Sand Flies in Iraq.
The invention relates to a coordinate measuring machine (CMM) for determining a measuring position of a probe. The AACMM isdepends on the robotkinematics (forward and reverse) in their measurementprinciple, i.e., using the AACMM links and joint angles todetermine the exact workspace or part coordinates. Hence, themeasurements are obtained using an AACMM will be extremely accurate and precise since that ismerely dependent on rigid structural parameters and the only source of measurement error is due to human operators. In this paper, a new AACMM design was proposed. The new AACMM design addresses common issues such as solving the complex kinematics, overcoming the workspace limitation, avoiding singularity, and eliminating the effects of
... Show MoreAbstract
Knowing the amount of residual stresses and find technological solutions to minimize and control them during the production operation are an important task because great levels of deformation which occurs in single point incremental forming (SPIF), this induce highly non-uniform residual stresses. In this papera propose of a method for multilayer single point incremental forming with change in thickness of the top plate (0.5, 0.7, 0.9) mm and lubrication or material between two plates(polymer, grease, grease with graphite, mos2) to knowing an effect of this method and parameters on residual stresses for the bottom plates. Also compare these results for the
... Show MoreOrganic soil is problematic soils in geotechnical engineering due to its properties, as it is characterized by high compressibility and low bearing capacity. Therefore, several geotechnical techniques tried to stabilize and improve this soil type. In this study, sodium silicate was used to stabilize sand dune columns. The best sodium silicate concentration (9%) was used, and the stabilized sand dune columns were cured for seven days. The results for this soil were extracted using a numerical analysis program (Plaxis 3D, 2020).In the case of studying the effect of (L/D) (where ‘’L” and ‘’D’’ length and diameter of sand dune columns) of a single column of sand dunes stabilized with sodium silicate with a diff
... Show More