Nanoparticles of humic acid and iron oxide were impregnated on the inert sand to produce sorbent for treating groundwater contained of cadmium and copper ions by technology of permeable reactive barrier (PRB). Sewage sludge was the source of the humic acid to prepare the coated sand by humic acid—iron oxide (CSHAIO) sorbent; so, this work is consistent with sustainable development. For 10 mg/L metal concentration, batch tests at speed of 200 rpm signified that the removal efficiencies are greater than 90% at sorbent dosage 0.25 g/ 50 mL, pH 6 and contact time 1 h. The kinetic data was well described by the Pseudo first-order model indicating that physicosorption is the predominant mechanism. The maximum adsorption capacities (qmax) were calculated by Langmuir model and their values of 25.273 and 114.142 mg/g for cadmium and copper ions respectively. Computer solution (COMSOL) Multiphysics program has utilized to simulate the metal ions transport in the column tests. Model predictions as well as experimental measurements signified that increasing bed depth with decreasing of flow rate and inlet concentration leads to delay in the propagation of metal front.
Molecular interactions between 2-isopropenylnaphthalene-methacrylic acid (IPNMA) block copolymer( as a model for water- soluble polymer) and methanol at several temperatures were studied using fluorescence techniques , Fluorescence spectrum for (IPNMA) exhibits two emission bands at around 342 nm and 387 nm corresponding to the monomer and the excimer bands , respectively .The fluorescence spectra of dilute solution of (IPNMA) in methanol were recorded in temperature range of 8- 45?C . Plot of the excimer to monomer intensity ratio Ie/Im versus temperature was obtained, which shows double lines with positive slopes crossing at 25?C , the increasing of slope value above this temperature is s
... Show MoreThe alteration in the hydrological regime in Iraq and the anthropogenic increasing effect on water quality of a lotic ecosystems needs to continuous monitoring. This work is done to assess the water quality of Tigris River within Baghdad City. Five sites were selected along the river and ten physicochemical parameters and Overall Index of Pollution (OIP) were applied to assess the water quality for the period between November 2020 and May 2021, the studied period were divided into dry and wet seasons. These parameters were water temperature, pH, dissolved oxygen (DO), biological oxygen demand (BOD), total hardness, alkalinity, turbidity, total phosphorus, total nitrogen, electrical co
In this research, the performance of electrocoagulation (EC) using aluminum (Al) electrodes with Monopolar- parallel (MP-P), and bipolar - series (BP-S) arrangement for simultaneous removal of dissolved silica, and hardness ions (calcium, and magnesium) from synthetic blowdown water of cooling tower were investigated. The effects of current density, initial pH and time of electrolysis on the removal efficiency were studied in a batch stirred unit to find out the best-operating conditions. The obtained results for each target species are evidence that BP-S approach is the best for both electrodes configuration operated at a Current density of 1mA/cm2 through 30 min of treatment and pH=10 with the removal of
... Show MoreSafe drinking water is essential for the present and future generations' health. This study aims to assess drinking water quality in Baghdad's Al-Rusafa neighborhood. Water samples were taken from 32 neighborhoods on this side. The quality of the examined potable water samples differed depending on the water source. This investigation's pH, chlorine, EC, TDS, TSS, Cd, and Pb levels were below acceptable ranges. TDS levels in Al-Mada'in are more significant than acceptable (>600ppm) water levels. Bacteria have polluted six communities (Shigella, Salmonella, Escherichia coli, and Klebsiella). Bacterial quality of drinking water and gram-negative bacteria resistant to chlorine in Baghdad's municipal water supply. Regarding pH, the w
... Show MoreThe injection of Low Salinity Water (LSWI) as an Enhanced Oil Recovery (EOR) method has recently attracted a lot of attention. Extensive research has been conducted to investigate and identify the positive effects of LSWI on oil recovery. In order to demonstrate the impact of introducing low salinity water into a reservoir, simulations on the ECLIPSE 100 simulator are being done in this work. To simulate an actual reservoir, an easy static model was made. In order to replicate the effects of injecting low salinity water and normal salinity, or seawater, the reservoir is three-phase with oil, gas, and water. It has one injector and one producer. Five cases were suggested to investigate the effect of low salinity water injection with differen
... Show MoreThis study relates to synthesis of bentonite-supported iron/copper nanoparticles through the biosynthesis method using eucalyptus plant leaf extract, which were then named E-Fe/Cu@B-NPs. The synthesised E-Fe/Cu@B-NPs were examined by a set of experiments involving a heterogeneous Fenton-like process that removed direct blue 15 (DB15) dye from wastewater. The resultant E-Fe/Cu@B-NPs were characterised by scanning electron microscopy, Brunauer–Emmet–Teller analysis, zeta potential analysis, Fourier transform infrared spectroscopy and atomic force microscopy. The operating parameters in batch experiments were optimised using Box–Behnken design. These parameters were pH, hydrogen peroxide (H2O2
... Show MoreGreen synthesis methods have emerged as favorable techniques for the synthesis of nano-oxides due to their simplicity, cost-effectiveness, eco-friendliness, and non-toxicity. In this study, Nickel oxide nanoparticles (NiO-NPs) were synthesized using the aqueous extract of Laurus nobilis leaves as a natural capping agent. The synthesized NiO-NPs were employed as an adsorbent for the removal of Biebrich Scarlet (BS) dye from aqueous solution using adsorption technique. Comprehensive characterization of NiO-NPs was performed using various techniques such as atomic force microscopy (AFM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett and Teller (BET) analysis, and scanning electron microscopy (SEM). Additionally, o
... Show MoreThe aim of the present work is to develop a new class of natural fillers based polymer composites with sawdust (S.D) which used two particle sizes (1.2 μm & 2.3 μm) and different weight percentage from sawdust (10%, 15%, and 20%). The mechanical properties studied include hardness (shore D) for all samples at normal conditions (N.C). The unsaturated polyester (UPE) and its composites samples were immersed in water for 30 days to find the effect of particle size of sawdust (S.D) on the weight gain (Mt %) by water for all the samples, also to find the effect of water on their hardness. The results show that the composite materials of sawdust (S.D) fillers which has particle size (1.2 μm) better than (2.3 μm) particle size bef
... Show MoreExpired drug Metoclopramide was investigated as an antibacterial corrosion inhibitor for carbon steel in 0.5M H3PO4 solution using the electrochemical method at 30oC and 60oC. The results showed that this drug is an efficient inhibitor for carbon steel and the efficiency reached to 82.244 % for 175 ppm at 30oC and 76.146% for 225 ppm at 60oC. The adsorption of drug on carbon steel surface follows Langmuir adsorption isotherm with small values of adsorption-desorption constant. The polarization plots revealed that Metoclopramide acts as mixed-type inhibitor. Some parameters of inhibition process were calculated and discussed. The surface morphology of the carbon steel speci
... Show More