The diesel oil type S-3 specified for diesel engine has limited the suitability for diesel trucks for 8000 km, but didn't clarify its suitability if used in tractor engines.It is known that the work style of farm tractor differs from that of other vehicles where tractors are used for all the activities in sever conditions and under the complete usage of the available power and capability, so there is no sign or indication of the usage period of this oil in tractor's engine. The oil has been used on Cirta C6806 tractors. The manual book of the tractor's engine, Deutz recommends changing the oil every 100 hrs. Therefore the main goal of this research is to give the recommended working hours for S-3 diesel oil when used in farm tractor engines. Five tractors have been used in this research and the engine oil was changed for the interval period of 20 hrs starting from 20, then 40, 60, 80, 100 and 120 hours. At the end of each period the oil of the five tractors was mixed and a sample was taken for testing. This procedure was repeated three times in order to obtain accurate results with statistical analysis. The statistical analysis results showed that the S-3 diesel oil deteriorates after 40 working hours because of the great consumption of the oil after this period and therefore this research recommends that the usage period of S-3 oil should not exceed more than 40 working hours when it is used in tractor's engine.
A set newly complexes with the general formula [M(L)Cl2] are resulting from the reaction of a new schiff base ligand [Ethyl (6R,7R)-7-((E)-2-((2-ethoxy-2- oxoethoxy)imino)-2-(2-(((E)-4-nitrobenzylidene) amino) thiazol -4- yl) acetamido) -8- oxo -3- vinyl -5- thia -1-aza bicyclo [4. 2.0] oct -2- ene -2- carboxylate] (L). This ligand was derived from the reaction of the two substances 4-nitrobenzaldehyde and precursor (P). Reaction the ligand with metal ions M= Mn(II), Co(II), Ni(II), Cu(II) and Cd(II) afforded new complexes which are characterized by FT-IR and Electronic Spectra. These measurements indicate that the complexes have a tetrahedral geometry. The Penicillin-Binding Protein 3 (PBP3) of Staphylococcus aureus and the target protein
... Show MoreSome new norms need to be adapted due to COVID-19 pandemic period where people need to wear masks, wash their hands frequently, maintain social distancing, and avoid going out unless necessary. Therefore, educational institutions were closed to minimize the spread of COVID-19. As a result of this, online education was adapted to substitute face-to-face learning. Therefore, this study aimed to assess the Malaysian university students’ adaptation to the new norms, knowledge and practices toward COVID-19, besides, their attitudes toward online learning. A convenient sampling technique was used to recruit 500 Malaysian university students from January to February 2021 through social media. For data collection, all students
... Show MoreAbstract
The purpose of our study was to develop Dabigatran Etexilate loaded nanostructured lipid carriers (DE-NLCs) using Glyceryl monostearate and Oleic acid as lipid matrix, and to estimate the potential of the developed delivery system to improve oral absorption of low bioavailability drug, different Oleic acid ratios effect on particle size, zeta potential, entrapment efficiency and loading capacity were studied, the optimized DE-NLCs shows a particle size within the nanorange, the zeta potential (ZP) was 33.81±0.73mV with drug entrapment efficiency (EE%) of 92.42±2.31% and a loading capacity (DL%) of 7.69±0.17%. about 92% of drug was released in 24hr in a controlled manner, the ex-vivo intestinal p
... Show MoreThe aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.
This study expands the state of the art in studies that assess torsional retrofit of reinforced concrete (RC) multi-cell box girders with carbon fiber reinforced polymer (CFRP) strips. The torsional behavior of non-damaged and pre-damaged RC multi-cell box girder specimens externally retrofitted by CFRP strips was investigated through a series of laboratory experiments. It was found that retrofitting the pre-damaged specimens with CFRP strips increased the ultimate torsional capacity by more than 50% as compared to the un-damaged specimens subjected to equivalent retrofitting. This indicated that the retrofit has been less effective for the girder specimen that did not develop distortion beforehand as a result of pre-loading. From
... Show MoreIn the present study, magnet silica-coated Ag2WO4/Ag2S nanocomposites (FOSOAWAS) were fabricated via a multistep method to address the drawbacks related to single photocatalysts (pure Ag2WO4 and pure Ag2S) and to clarify the significant influence of semiconductor heterojunction on the enhancement of visible-light-driven organic degradation. Different techniques were performed to investigate the elemental composition, morphology, magnetic and photoelectrochemical properties of the fabricated FOSOAWAS photocatalyst. The FOSOAWAS photocatalyst (1 g/L) exhibited excellent photodegradation efficiency (99.5%) against Congo red dye (CR = 20 ppm) after 140 min of visible-light illumination. This result confirmed the ability of the heterojunction be
... Show MoreIn this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin
This investigation reports application of a mesoporous nanomaterial based on dicationic ionic liquid bonded to amorphous silica, namely nano-N,N,N′,N′-tetramethyl-N-(silican-propyl)-N′-sulfo-ethane-1,2-diaminium chloride (nano-[TSPSED][Cl]2), as an extremely effectual and recoverable catalyst for the generation of bis(pyrazolyl)methanes and pyrazolopyranopyrimidines in solvent-free conditions. In both synthetic protocols, the performance of this catalyst was very useful and general and presented attractive features including short reaction times with high yields, reasonable turnover frequency and turnover number values, easy workup, high performance under mild conditions, recoverability and reusability in 5 consecutive runs without lo
... Show More