The research aims to determine optimal urban planning and design indicators of the urban clusters form in hot arid zones through studying of three urban areas in Baghdad, analyzing their urban indicators which include floor area ratio (FAR), urban clusters height, building density or land coverage, green areas, paved areas, shading ratio and how they affect urban temperature. The research reached the conclusion that air outdoor temperature on urban areas affected primarily by shadows casted on the ground, the effect of shaded area equals (5) times the effect of paved areas and (3.7) times the effect of green areas, this means that increasing urban clusters height in hot arid zones could minimize air outdoor temperature, buildings with (6) levels at minimum seems to be suitable to produce shadows in the ground plane of urban land, Increasing urban volumes in the vertical dimension height and compacting clusters or increasing FAR seem to be a smart strategy to minimize the hot dry climate effect and urban temperature.
This paper is concerned with pre-test single and double stage shrunken estimators for the mean (?) of normal distribution when a prior estimate (?0) of the actule value (?) is available, using specifying shrinkage weight factors ?(?) as well as pre-test region (R). Expressions for the Bias [B(?)], mean squared error [MSE(?)], Efficiency [EFF(?)] and Expected sample size [E(n/?)] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants included in these expressions. Comparisons between suggested estimators, with respect to classical estimators in the sense of Bias and Relative Efficiency, are given. Furthermore, comparisons with the earlier existing works are drawn.
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreThe current study deals with the performance of constructed wetland (CW) incorporating a microbial fuel cell (MFC) for wastewater treatment and electricity generation. The whole unit is referred to as CW-MFC. This technique involves two treatments; the first is an aerobic treatment which occurs in the upper layer of the system (cathode section) and the second is anaerobic biological treatment in the lower layer of the system (anode section). Two types of electrode material were tested; stainless steel and graphite. Three configurations for electrodes arrangement CW-MFC were used. In the first unit of CW-MFC, the anode was graphite plate (GPa) and cathode was also graphite plate (GPc), in the second CW-MFC unit, the anode was stainless st
... Show MoreThe relationship between costs of environment and costs of product life – cycle. Boubtlessly when the economical unit exercise their productive works, they lead to pollution in water, air and soil as well as all stages of product life- cycle from Rans Dstage, production stage, packaging stage and finally abandonment stage- Pollution causes environmental costs. Lgnoring or hiding environmental costs and no taking them in consideration with product cost lead to a wrong account of preduot cost.
Therefore, environmental costs should be included and matched for all stages with in product costs to know which activities, processes
... Show MoreCodes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show MoreThe two parameters of Exponential-Rayleigh distribution were estimated using the maximum likelihood estimation method (MLE) for progressively censoring data. To find estimated values for these two scale parameters using real data for COVID-19 which was taken from the Iraqi Ministry of Health and Environment, AL-Karkh General Hospital. Then the Chi-square test was utilized to determine if the sample (data) corresponded with the Exponential-Rayleigh distribution (ER). Employing the nonlinear membership function (s-function) to find fuzzy numbers for these parameters estimators. Then utilizing the ranking function transforms the fuzzy numbers into crisp numbers. Finally, using mean square error (MSE) to compare the outcomes of the survival
... Show MoreThe logistic regression model regarded as the important regression Models ,where of the most interesting subjects in recent studies due to taking character more advanced in the process of statistical analysis .
The ordinary estimating methods is failed in dealing with data that consist of the presence of outlier values and hence on the absence of such that have undesirable effect on the result. &nbs
... Show MoreSeparation of Trigonelline, the major alkaloid in fenugreek seeds, is difficult because the extract of these seeds usually contains Trigonelline, choline, mucilage, and steroidal saponins, in addition to some other substances. This study amis to isolate the quaternary ammonium alkaloid (Trigonelline) and choline from fenugreek seeds (Trigonella-foenum graecum L.) which have similar physiochemical properties by modifying of the classical method. Seeds were defatted and then extracted with methanol. The presence of alkaloids was detected by using Mayer's and Dragendorff's reagents. In this work, trigonilline was isolated with traces of choline by subsequent processes of purification using analytical and preparative TLC techniques.
... Show MoreConditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.