Abstract: Mixed ligand Mn(II), Co(II), Ni(II), Cu (II), Zn(II), and Cd(II) complexes with (TMAP) Schiff base ligand and (8HQ) have been composition and analyzed. Diagnosis by, melting point, solubility, Electronic, mass and IR-spectroscopic studies, conductivity elemental, thermoanalytical analysis displayed the forming of mononuclear complexes. Spectral studies results suggest an octahedral system or the metal (II) mixed complexes. The detainments of molar conductance of the mixed complexes in DMF coincide to electrolytic nature of the mixed complexes, consequently, these complexes could be subedited as [M(TMAP)(8Q)(H2O)]nX.yH2O (M=Co(II) and Cu(II) complexes(where n = 1, y = 0 ); [M(TMAP)(8Q)(H2O)]nX.yH2O (M = (where n = 1, y = 1 for Ni(II) complex and n = 1, y = 2 for Cd(II) complex) and [M(TMAP)(8Q)(H2O)]nX.yH2O (M = Mn(II) (n = y = 2) and Fe(III) (n = 3, y = 0)). On the principle of electronic spectra, magnetic moment studies, an octahedral structure has been designated for the metal complexes. Further parameters of the thermodynamic and kinetic for the various stages of decomposition were determined to utilize the Horowitz–Metzger and Coats–Redfern ways. Then, the ligand in rapprochement to metal complexes is tested for their anticancer and antimicrobial efficacy with breastic cancer cell line. The outcomes showed that the metal complexes are more active than the parent TMAP ligand but more active than (8HQ) free ligand. In these complexes, the metal ion chalets to the ligand through the azomethine linkage, (NH2) and imine(C=N) groups of trimethoprim drug. The outcomes of conductivity related that the complexes were all 1:1 electrolytes except Mn(II) and Zn(II) complexes are non- electrolyte. The metal complexes were tested for their antimicrobial efficacies applying agar disc diffusion method and the outcomes related that they were active with bacteria pieces screened.
Wildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreAbstract
Uncertainty, the deeply-rooted fact that surrounding the investment environment, especially the stock market which just prices have taken a specific trend until they moved to another one for its up or down. This means that the volatility characteristic of financial market requires the rational investor an argument led towards the adoption of planned acts to gain greater benefit in the goal of wealth maximizing. There is no possibility to achieve this goal without the burden of uncertainty and the risk of systematic fluctuations of investment returns in the financial market after the facts of efficient diversification have pro
... Show MoreIn this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these measurement
... Show MoreMany consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s
... Show MoreThe high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning elect
... Show MoreIn this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these
... Show MoreThe aim of this study to identity using Daniel's model and Driver’s model in learning a kinetic chain on the uneven bars in the artistic gymnastics for female students. The researchers used the experimental method to design equivalent groups with a preand post-test, and the research community was identified with the students of the third stage in the college for the academic year 2020-2021 .The subject was, (3) class were randomly selected, so (30) students distributed into (3) groups). has been conducted pretesting after implementation of the curriculum for (4) weeks and used the statistical bag of social sciences(SPSS)to process the results of the research and a set of conclusions was reached, the most important of which is t
... Show More