Preferred Language
Articles
/
BRZDtYcBVTCNdQwCUV6e
Studying the Classification of Texture Images by K-Means of Co-Occurrence Matrix and Confusion Matrix
...Show More Authors

In this research, a group of gray texture images of the Brodatz database was studied by building the features database of the images using the gray level co-occurrence matrix (GLCM), where the distance between the pixels was one unit and for four angles (0, 45, 90, 135). The k-means classifier was used to classify the images into a group of classes, starting from two to eight classes, and for all angles used in the co-occurrence matrix. The distribution of the images on the classes was compared by comparing every two methods (projection of one class onto another where the distribution of images was uneven, with one category being the dominant one. The classification results were studied for all cases using the confusion matrix between every Two cases or two steps (two different angles and for the same number of classes). The agreement percentage between the classification results and the various methods was calculated.

Crossref
Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Advances In Science, Technology And Engineering Systems Journal
Bayes Classification and Entropy Discretization of Large Datasets using Multi-Resolution Data Aggregation
...Show More Authors

Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Sep 04 2018
Journal Name
Al-khwarizmi Engineering Journal
Studying the Mechanical Properties of Denture Base Materials Fabricated from Polymer Composite Materials
...Show More Authors

In this research, the effect of adding two different types of reinforcing particles was investigated, which included: nano-zirconia (nano-ZrO2) particles and micro-lignin particles that were added with different volume fractions of 0.5%, 1%, 1.5% and 2% on the mechanical properties of polymer composite materials. They were prepared in this research, as a complete prosthesis and partial denture base materials was prepared, by using cold cure poly methyl methacrylate (PMMA) resin matrix. The composite specimens in this research consist of two groups according to the types of reinforced particles, were prepared by using casting methods, type (Hand Lay-Up) method. The first group consists of PMMA resin reinforced by (nano-ZrO

... Show More
View Publication Preview PDF
Crossref (13)
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Synthesis and Characterization of Some New Pyridine and Pyrimidine Derivatives and Studying Their Biological Activities
...Show More Authors

Heterocyclic systems, which are essential in medicinal chemistry due to their promising cytotoxic activity, are one of the most important families of organic molecules found in nature or produced in the laboratory. As a result of coupling N-(4-nitrophenyl)-3-oxo-butanamide (3) using thiourea, indole-3-carboxaldehyde, or piperonal, the pyrimidine derivatives (5a and 5b) were produced. Furthermore, pyrimidine 9 was synthesized by reacting thiophene-2-carboxaldehyde with ethyl cyanoacetate and urea with potassium carbonate as a catalyst. The chalcones 11a and 11b were synthesized by reacting equal molar quantities of 1-naphthaldehy

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (5)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Aip Conference Proceedings
Studying the partial substitution of barium with cadmium oxide and its effect on the electrical and structural properties of HgBa2Ca2Cu3O8+δ superconducting compound
...Show More Authors

View Publication
Scopus (24)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Mon Feb 21 2022
Journal Name
Iraqi Journal For Computer Science And Mathematics
Fuzzy C means Based Evaluation Algorithms For Cancer Gene Expression Data Clustering
...Show More Authors

The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Wed Aug 10 2022
Journal Name
Ibero-american Journal Of Exercise And Sports Psychology
The impact of applying the K-W-L self-scheduling technique on first-year intermediate students' learning of basic volleyball skills
...Show More Authors

The impact of applying the K-W-L self-scheduling technique on first-year intermediate students' learning of basic volleyball skills, Ayad Ali Hussein*, Israa Fouad Salih

View Publication Preview PDF
Scopus (7)
Scopus
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
PDCNN: FRAMEWORK for Potato Diseases Classification Based on Feed Foreword Neural Network
...Show More Authors

         The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work  is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Feb 20 2019
Journal Name
Iraqi Journal Of Physics
A comparison between PCA and some enhancement filters for denoising astronomical images
...Show More Authors

This paper includes a comparison between denoising techniques by using statistical approach, principal component analysis with local pixel grouping (PCA-LPG), this procedure is iterated second time to further improve the denoising performance, and other enhancement filters were used. Like adaptive Wiener low pass-filter to a grayscale image that has been degraded by constant power additive noise, based on statistics estimated from a local neighborhood of each pixel. Performs Median filter of the input noisy image, each output pixel contains the Median value in the M-by-N neighborhood around the corresponding pixel in the input image, Gaussian low pass-filter and Order-statistic filter also be used.

Experimental results shows LPG-

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2013
Journal Name
Iraqi Journal Of Physics
A comparison between PCA and some enhancement filters for denoising astronomical images
...Show More Authors

This paper includes a comparison between denoising techniques by using statistical approach, principal component analysis with local pixel grouping (PCA-LPG), this procedure is iterated second time to further improve the denoising performance, and other enhancement filters were used. Like adaptive Wiener low pass-filter to a grayscale image that has been degraded by constant power additive noise, based on statistics estimated from a local neighborhood of each pixel. Performs Median filter of the input noisy image, each output pixel contains the Median value in the M-by-N neighborhood around the corresponding pixel in the input image, Gaussian low pass-filter and Order-statistic filter also be used. Experimental results shows LPG-PCA method

... Show More