Preferred Language
Articles
/
BIbHh4YBIXToZYAL6o0r
Calibration of a New Concrete Damage Plasticity Theoretical Model Based on Experimental Parameters
...Show More Authors

The introduction of concrete damage plasticity material models has significantly improved the accuracy with which the concrete structural elements can be predicted in terms of their structural response. Research into this method's accuracy in analyzing complex concrete forms has been limited. A damage model combined with a plasticity model, based on continuum damage mechanics, is recommended for effectively predicting and simulating concrete behaviour. The damage parameters, such as compressive and tensile damages, can be defined to simulate concrete behavior in a damaged-plasticity model accurately. This research aims to propose an analytical model for assessing concrete compressive damage based on stiffness deterioration. The proposed method can determine the damage variables at the start of the loading process, and this variable continues to increase as the load progresses until complete failure. The results obtained using this method were assessed through previous studies, whereas three case studies for concrete specimens and reinforced concrete structural elements (columns and gable beams) were considered. Additionally, finite element models were also developed and verified. The results revealed good agreement in each case. Furthermore, the results show that the proposed method outperforms other methods in terms of damage prediction, particularly when damage is calculated using the stress ratio. Doi: 10.28991/CEJ-2022-08-02-03 Full Text: PDF

Scopus Clarivate Crossref
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Microgrid Integration Based on Deep Learning NARMA-L2 Controller for Maximum Power Point Tracking
...Show More Authors

This paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength.  This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.

Moreover, the proposed controller i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Modern Applied Science
Hybrid Methodology for Image Segmentation Based on Active Contour Module and Alpha-Shape Theory
...Show More Authors

The concept of the active contour model has been extensively utilized in the segmentation and analysis of images. This technology has been effectively employed in identifying the contours in object recognition, computer graphics and vision, biomedical processing of images that is normal images or medical images such as Magnetic Resonance Images (MRI), X-rays, plus Ultrasound imaging. Three colleagues, Kass, Witkin and Terzopoulos developed this energy, lessening “Active Contour Models” (equally identified as Snake) back in 1987. Being curved in nature, snakes are characterized in an image field and are capable of being set in motion by external and internal forces within image data and the curve itself in that order. The present s

... Show More
Publication Date
Fri Nov 04 2022
Journal Name
Journal Of Optics
Coreless optical fiber for hemoglobin (HB) sensing with bilayer based on surface plasmon resonance
...Show More Authors

In this work, an optical fiber biomedical sensor for detecting the ratio of the hemoglobin in the blood is presented. A surface plasmon resonance (SPR)-based coreless optical fiber was developed and implemented using single- and multi-mode optical fibers. The sensor is also utilized to evaluate refractive indices and concentrations of hemoglobin in blood samples, with 40 nm thickness of (20 nm Au and 20 nm Ag) to increase the sensitivity. It is found in practice that when the sensitive refractive index increases, the resonant wavelength increases due to the decrease in energy.

View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Computational And Theoretical Nanoscience
Solution for Multi-Objective Optimisation Master Production Scheduling Problems Based on Swarm Intelligence Algorithms
...Show More Authors

The emphasis of Master Production Scheduling (MPS) or tactic planning is on time and spatial disintegration of the cumulative planning targets and forecasts, along with the provision and forecast of the required resources. This procedure eventually becomes considerably difficult and slow as the number of resources, products and periods considered increases. A number of studies have been carried out to understand these impediments and formulate algorithms to optimise the production planning problem, or more specifically the master production scheduling (MPS) problem. These algorithms include an Evolutionary Algorithm called Genetic Algorithm, a Swarm Intelligence methodology called Gravitational Search Algorithm (GSA), Bat Algorithm (BAT), T

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (13)
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Iraqi Journal Of Physics
Gas Sensor for Hazardous Nitrogen Dioxide Based on TiO2 Nanotube Synthesis via Electrochemical Method
...Show More Authors

Because of the quick growth of electrical instruments used in noxious gas detection, the importance of gas sensors has increased. X-ray diffraction (XRD) can be used to examine the crystal phase structure of sensing materials, which affects the properties of gas sensing. This contributes to the study of the effect of electrochemical synthesis of titanium dioxide (TiO2) materials with various crystal phase shapes, such as rutile TiO2 (R-TiO2NTs) and anatase TiO2 (A-TiO2NTs). In this work, we have studied the effect of voltage on preparing TiO2 nanotube arrays via the anodization technique for gas sensor applications. The results acquired from XRD, energy dispersion spectro

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Al-khwarizmi Engineering Journal
High Transaction Rates Performance Evaluation for Secure E-government Based on Private Blockchain Scheme
...Show More Authors

 

The implementation of technology in the provision of public services and communication to citizens, which is commonly referred to as e-government, has brought multitude of benefits, including enhanced efficiency, accessibility, and transparency. Nevertheless, this approach also presents particular security concerns, such as cyber threats, data breaches, and access control. One technology that can aid in mitigating the effects of security vulnerabilities within e-government is permissioned blockchain. This work examines the performance of the hyperledger fabric private blockchain under high transaction loads by analyzing two scenarios that involve six organizations as case studies. Several parameters, such as transaction send ra

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Applied And Computational Mathematics
Reliable computational methods for solving Jeffery-Hamel flow problem based on polynomial function spaces
...Show More Authors

In this paper reliable computational methods (RCMs) based on the monomial stan-dard polynomials have been executed to solve the problem of Jeffery-Hamel flow (JHF). In addition, convenient base functions, namely Bernoulli, Euler and Laguerre polynomials, have been used to enhance the reliability of the computational methods. Using such functions turns the problem into a set of solvable nonlinear algebraic system that MathematicaⓇ12 can solve. The JHF problem has been solved with the help of Improved Reliable Computational Methods (I-RCMs), and a review of the methods has been given. Also, published facts are used to make comparisons. As further evidence of the accuracy and dependability of the proposed methods, the maximum error remainder

... Show More
View Publication
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Fri Dec 31 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
Performance Analysis for Hybrid Massive MIMO FSO/RF Links Based on Efficient Channel Codes
...Show More Authors

View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Fri Sep 27 2024
Journal Name
Journal Of Applied Mathematics And Computational Mechanics
Fruit classification by assessing slice hardness based on RGB imaging. Case study: apple slices
...Show More Authors

Correct grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 %  1.66 %. This

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Microwave Nondestructive Testing for Defect Detection in Composites Based on K-Means Clustering Algorithm
...Show More Authors

View Publication
Scopus (59)
Crossref (59)
Scopus Clarivate Crossref