One of the most popular and legally recognized behavioral biometrics is the individual's signature, which is used for verification and identification in many different industries, including business, law, and finance. The purpose of the signature verification method is to distinguish genuine from forged signatures, a task complicated by cultural and personal variances. Analysis, comparison, and evaluation of handwriting features are performed in forensic handwriting analysis to establish whether or not the writing was produced by a known writer. In contrast to other languages, Arabic makes use of diacritics, ligatures, and overlaps that are unique to it. Due to the absence of dynamic information in the writing of Arabic signatures, it will be more difficult to attain greater verification accuracy. On the other hand, the characteristics of Arabic signatures are not very clear and are subject to a great deal of variation (features’ uncertainty). To address this issue, the suggested work offers a novel method of verifying offline Arabic signatures that employs two layers of verification, as opposed to the one level employed by prior attempts or the many classifiers based on statistical learning theory. A static set of signature features is used for layer one verification. The output of a neutrosophic logic module is used for layer two verification, with the accuracy depending on the signature characteristics used in the training dataset and on three membership functions that are unique to each signer based on the degree of truthiness, indeterminacy, and falsity of the signature features. The three memberships of the neutrosophic set are more expressive for decision-making than those of the fuzzy sets. The purpose of the developed model is to account for several kinds of uncertainty in describing Arabic signatures, including ambiguity, inconsistency, redundancy, and incompleteness. The experimental results show that the verification system works as intended and can successfully reduce the FAR and FRR.
The present study develops an artificial neural network (ANN) to model an analysis and a simulation of the correlation between the average corrosion rate carbon steel and the effective parameter Reynolds number (Re), water concentration (Wc) % temperature (T o) with constant of PH 7 . The water, produced fom oil in Kirkuk oil field in Iraq from well no. k184-Depth2200ft., has been used as a corrosive media and specimen area (400 mm2) for the materials that were used as low carbon steel pipe. The pipes are supplied by Doura Refinery . The used flow system is all made of Q.V.F glass, and the circulation of the two –phase (liquid – liquid ) is affected using a Q.V.F pump .The input parameters of the model consists of Reynolds number , w
... Show MoreRecently, several concepts and expressions have emerged that have often preoccupied the world . around the concept of environment and sustainability. This is due to the negative and irresponsible impact of man and his innovations in various industrial and technological fieldsthat have damaged the natural environment. Architecture and cities at the broader level are some of the man made components that caused these negative impacts and in the same time affected by them. What distinguishes architectural and urban projects is the consumption of large . quantities of natural resources and production larger amounts of waste and pollution, along the life of these projects. At the end of the twentieth century and the beginning of the twenty-fir
... Show MoreBackground: The synthesis and characterization of novel liquid crystalline compounds have garnered signi|cant attention due to their potential applications in biomedical sciences, including drug delivery systems, biosensing, and diagnostic tools. This study focuses on synthesizing and characterizing new thiazolothiadiazole-based liquid crystals and evaluating their mesophase properties. Methods: A series of novel compounds containing 5H-thiazolo[4,3−b][1,3,4] thiadiazole units were synthesized via multi-step chemical reactions. The synthesis involved the reaction of chloroethyl acetate with 4−hydroxybenzaldehyde to yield an aldehyde intermediate, followed by subsequent transformations using hydrazine hydrate, ethylacetoacetate, and 1,2
... Show MoreThe aim of this study was to get monosodium glutamate (MSG) flavor, which was obtained from glutamic acid, that produced from local isolated from Bacillus subtilis EN3A1-P19U7 which genetically improved, from Bacillus subtilis EN3A1-P19U7, and applied in sausage chicken meat, mayonnaise and vegetable and lentil soup, it has been added MSG product in this study at different concentrations with the use of chicken broth cubes (Maggi) as a commercial flavor for comparison, and it was conducted sensory evaluation of these products and found that the addition of MSG product this study at the level of 0.6% to the sausage chicken and 0.6% to the mayonnaise and 0.15% to the vegetable and lentil soup, the results of sensory evaluation show not signif
... Show MoreIn this paper, we have investigated some of the most recent energy efficient routing protocols for wireless body area networks. This technology has seen advancements in recent times where wireless sensors are injected in the human body to sense and measure body parameters like temperature, heartbeat and glucose level. These tiny wireless sensors gather body data information and send it over a wireless network to the base station. The data measurements are examined by the doctor or physician and the suitable cure is suggested. The whole communication is done through routing protocols in a network environment. Routing protocol consumes energy while helping non-stop communic
... Show MorePot experiment was carried out at the College of Agriculture – Baghdad University during autumn season, 2007. Thirteen treatments were formulated to evaluate the effectiveness of four applications of Phosphorus (0, 60, 60×2 and 120 Kg P. h-1) and three applications of Zinc (0, 25×2 mg Zn. L-1 and 50 mg Zn. Kg soil-1) along with inoculating seeds of bean with strains mixture 889 and 1865 and non-inoculated treatment, on nodulation, yield and protein content in seeds (N%). The results showed that inoculated plants exceeded on non-inoculated one in all the studied characteristics. While, P and Zn, applications at the rate of 60×2 kg/ha and 25×2 mg/L respectively, significantly, increased, nodulation, yield, protein content in se
... Show MoreIn this research, we use fuzzy nonparametric methods based on some smoothing techniques, were applied to real data on the Iraqi stock market especially the data about Baghdad company for soft drinks for the year (2016) for the period (1/1/2016-31/12/2016) .A sample of (148) observations was obtained in order to construct a model of the relationship between the stock prices (Low, high, modal) and the traded value by comparing the results of the criterion (G.O.F.) for three techniques , we note that the lowest value for this criterion was for the K-Nearest Neighbor at Gaussian function .
In regression testing, Test case prioritization (TCP) is a technique to arrange all the available test cases. TCP techniques can improve fault detection performance which is measured by the average percentage of fault detection (APFD). History-based TCP is one of the TCP techniques that consider the history of past data to prioritize test cases. The issue of equal priority allocation to test cases is a common problem for most TCP techniques. However, this problem has not been explored in history-based TCP techniques. To solve this problem in regression testing, most of the researchers resort to random sorting of test cases. This study aims to investigate equal priority in history-based TCP techniques. The first objective is to implement
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show More