One of the most popular and legally recognized behavioral biometrics is the individual's signature, which is used for verification and identification in many different industries, including business, law, and finance. The purpose of the signature verification method is to distinguish genuine from forged signatures, a task complicated by cultural and personal variances. Analysis, comparison, and evaluation of handwriting features are performed in forensic handwriting analysis to establish whether or not the writing was produced by a known writer. In contrast to other languages, Arabic makes use of diacritics, ligatures, and overlaps that are unique to it. Due to the absence of dynamic information in the writing of Arabic signatures, it will be more difficult to attain greater verification accuracy. On the other hand, the characteristics of Arabic signatures are not very clear and are subject to a great deal of variation (features’ uncertainty). To address this issue, the suggested work offers a novel method of verifying offline Arabic signatures that employs two layers of verification, as opposed to the one level employed by prior attempts or the many classifiers based on statistical learning theory. A static set of signature features is used for layer one verification. The output of a neutrosophic logic module is used for layer two verification, with the accuracy depending on the signature characteristics used in the training dataset and on three membership functions that are unique to each signer based on the degree of truthiness, indeterminacy, and falsity of the signature features. The three memberships of the neutrosophic set are more expressive for decision-making than those of the fuzzy sets. The purpose of the developed model is to account for several kinds of uncertainty in describing Arabic signatures, including ambiguity, inconsistency, redundancy, and incompleteness. The experimental results show that the verification system works as intended and can successfully reduce the FAR and FRR.
In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreAn experiment was conducted to study how SAE 50 engine oil contaminated with diesel fuel affects engine performance. The engine oil was contaminated with diesel fuel at concentrations of 0%, 1%, and 3%. The following performance characteristics were studied: brake-specific fuel consumption, brake thermal efficiency, friction power, and exhaust gas temperature. Each treatment was tested three times. The three treatments (0%, 1%, and 3%) were analyzed statistically with a one-way ANOVA model at the 5% probability level to determine if the three treatments produced significant differences in engine performance. The statistical results showed that there were significant differences in engine performance metrics among the three treatments. The 3
... Show MoreThe earth's surface comprises different kinds of land cover, water resources, and soil, which create environmental factors for varied animals, plants, and humans. Knowing the significant effects of land cover is crucial for long-term development, climate change modeling, and preserving ecosystems. In this research, the Google Earth Engine platform and freely available Landsat imagery were used to investigate the impact of the expansion and degradation in urbanized areas, watersheds, and vegetative cover on the land surface temperature in Baghdad from 2004 to 2021. Land cover indices such as the Normalized Difference Vegetation Index, Normalized Difference Water Index, and Normalized Difference Built-up Index (NDVI, NDWI, an
... Show MoreThis paper studies the investment project evaluation under the condition of uncertainty. Evaluation of investment project under risk and uncertainty is possible to be carried out through application of various methods and techniques. The best known methods are : Risk-adjusted discount rate , certainty equivalent method , Sensitivity analysis and Simulation method The objective of this study is using the sensitivity analysis in evaluation Glass Bottles project in Anbar province under the condition of risk and uncertainty.
After applying sensitivity analysis we found that the glass bottles project sensitive to the following factors (cash flow, the cost of investment, and the pro
... Show MoreThis research aims to clarify the advantages of using the regression method as analytical procedure in the tax audit to reducing the examination cost , time, effort, human and material resources, and represents an applied study in the General Commission of taxes. In order to achieve its objectives the research has used in the theoretical side the descriptive approach (analytical), and in the practical side regression method has been applied to the research sample represented by the soft drinks company that is subject to the tax settlement for the year 2014, where the value of sales has been verified by using the regression method without conductinga comprehensive examination. The most important results of the research indicate that the r
... Show MoreIn this work, new di-acid monomers 4, 4’-di-carboxillic-2â€-chloro-4â€- nitro triphenylamine (Di-CO2H-1), 4, 4’- di-carboxylic -2â€,4â€,6â€-trichloro-triphenylamine (Di-CO2H-2) were synthesized by reaction of p-cyanobenzofluride with two aromatic amines (2-chloro 4-nitro aniline and 2,4,6-trichloro aniline by aromatic nucleophilc substitution method to produce two di cyano intermediates compounds 4, 4’-Dicyano-2â€-chloro-4â€- nitro triphenylamine (Di-CN1) and 4, 4’-dicyano-2â€,4â€,6â€-trichloro-triphenylamine (Di-CN2) which form final di-carboxylic monomers after alkaline hydrolysis. Finally, these monomers react with two different arom
... Show MoreThe purpose of this paper is to identifying the relationship between the moral climate and the decision-making of boxing referees from the standpoint of the coaches, and the research problem lies through the work of the researchers in training and managing the teams. It was noted that the role of the referees is one of the most important roles played by the workers to achieve the objectives of the federation, and that the moral climate that prevails among the administrative body the union and the referees on the one hand and between the referees and coaches on the other hand are among the factors of the success of everyone’s work and the survival and strengthening of confidence in their work and thus the continuity of success and
... Show More