One of the most popular and legally recognized behavioral biometrics is the individual's signature, which is used for verification and identification in many different industries, including business, law, and finance. The purpose of the signature verification method is to distinguish genuine from forged signatures, a task complicated by cultural and personal variances. Analysis, comparison, and evaluation of handwriting features are performed in forensic handwriting analysis to establish whether or not the writing was produced by a known writer. In contrast to other languages, Arabic makes use of diacritics, ligatures, and overlaps that are unique to it. Due to the absence of dynamic information in the writing of Arabic signatures, it will be more difficult to attain greater verification accuracy. On the other hand, the characteristics of Arabic signatures are not very clear and are subject to a great deal of variation (features’ uncertainty). To address this issue, the suggested work offers a novel method of verifying offline Arabic signatures that employs two layers of verification, as opposed to the one level employed by prior attempts or the many classifiers based on statistical learning theory. A static set of signature features is used for layer one verification. The output of a neutrosophic logic module is used for layer two verification, with the accuracy depending on the signature characteristics used in the training dataset and on three membership functions that are unique to each signer based on the degree of truthiness, indeterminacy, and falsity of the signature features. The three memberships of the neutrosophic set are more expressive for decision-making than those of the fuzzy sets. The purpose of the developed model is to account for several kinds of uncertainty in describing Arabic signatures, including ambiguity, inconsistency, redundancy, and incompleteness. The experimental results show that the verification system works as intended and can successfully reduce the FAR and FRR.
This paper studies the investment project evaluation under the condition of uncertainty. Evaluation of investment project under risk and uncertainty is possible to be carried out through application of various methods and techniques. The best known methods are : Risk-adjusted discount rate , certainty equivalent method , Sensitivity analysis and Simulation method The objective of this study is using the sensitivity analysis in evaluation Glass Bottles project in Anbar province under the condition of risk and uncertainty.
After applying sensitivity analysis we found that the glass bottles project sensitive to the following factors (cash flow, the cost of investment, and the pro
... Show MoreIn this study, silica-graphene oxide nano–composites were prepared by sol-gel technique and deposited by spray pyrolysis method on glass substrate. The effect of changing the graphene/silica ratio on the optical properties and wetting of these nano–structures has been investigated. The structural and morphological properties of the thin films have been studied by x-ray diffraction spectroscopy (XRD), field emission scanning electron microscope (FESEM), energy dispersive x-ray spectroscopy (EDS) and atomic force microscope (AFM). XRD results show that silica structures present in the synthesized films exhibit amorphous character and there is a poor arrangement in graphene plates al
Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreThis paper presents seven modified Adomian Decomposition Method (ADM) techniques for efficiently solving initial value problems, especially those involving non-homogeneous and nonlinear differential equations. While the classical ADM is effective for linear homogeneous cases, it has difficulties solving more complex problems. The proposed modifications—from MADM1 to MLADM—include Maclaurin and Taylor expansions, Laplace transforms, and single-step iterations.• These modifications enhance convergence, reduce complexity, and improve accuracy.• Each method offers specific advantages, such as accelerating convergence (MADM2, RADM4), simplifying computation (TSADM5), and achieving higher accuracy (MLADM).• Numerical examples confirm th
... Show MoreThe aim of this paper is to present a new methodology to find the private key of RSA. A new initial value which is generated from a new equation is selected to speed up the process. In fact, after this value is found, brute force attack is chosen to discover the private key. In addition, for a proposed equation, the multiplier of Euler totient function to find both of the public key and the private key is assigned as 1. Then, it implies that an equation that estimates a new initial value is suitable for the small multiplier. The experimental results show that if all prime factors of the modulus are assigned larger than 3 and the multiplier is 1, the distance between an initial value and the private key
... Show MoreThis research aims to clarify the advantages of using the regression method as analytical procedure in the tax audit to reducing the examination cost , time, effort, human and material resources, and represents an applied study in the General Commission of taxes. In order to achieve its objectives the research has used in the theoretical side the descriptive approach (analytical), and in the practical side regression method has been applied to the research sample represented by the soft drinks company that is subject to the tax settlement for the year 2014, where the value of sales has been verified by using the regression method without conductinga comprehensive examination. The most important results of the research indicate that the r
... Show MoreIn this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
The purpose of this paper is to identifying the relationship between the moral climate and the decision-making of boxing referees from the standpoint of the coaches, and the research problem lies through the work of the researchers in training and managing the teams. It was noted that the role of the referees is one of the most important roles played by the workers to achieve the objectives of the federation, and that the moral climate that prevails among the administrative body the union and the referees on the one hand and between the referees and coaches on the other hand are among the factors of the success of everyone’s work and the survival and strengthening of confidence in their work and thus the continuity of success and
... Show MoreFree Piston Engine Linear Generator (FPELG) is a modern engine and promising power generation engine. It has many advantages compared to conventional engines such as less friction, few numbers of parts, and high thermal efficiency. The cycle-to-cycle variation one of the big challenges of the FPELG because it is influence on the stability and output power of the engine. Therefore, in this study, the effect of ignition time on combustion characteristics is investigated. The single-cylinder FPELG with spark ignition (SI) combustion type by using compressed natural gas (CNG) fuel type was set to run. LabVIEW is used to run the engine and control of input parameters. All experimental data