Coal fines are highly prone to be generated in all stages of Coal Seam Gas (CSG) production and development. These detached fines tend to aggregate, contributing to pore throat blockage and permeability reduction. Thus, this work explores the dispersion stability of coal fines in CSG reservoirs and proposes a new additive to be used in the formulation of the hydraulic fracturing fluid to keep the fines dispersed in the fluid. In this work, bituminous coal fines were tested in various suspensions in order to study their dispersion stability. The aggregation behavior of coal fines (dispersed phase) was analyzed in different dispersion mediums, including deionized-water, low and high sodium chloride solutions. Furthermore, the effect of Sodium
... Show MoreThe need for an efficient method to find the furthermost appropriate document corresponding to a particular search query has become crucial due to the exponential development in the number of papers that are now readily available to us on the web. The vector space model (VSM) a perfect model used in “information retrieval”, represents these words as a vector in space and gives them weights via a popular weighting method known as term frequency inverse document frequency (TF-IDF). In this research, work has been proposed to retrieve the most relevant document focused on representing documents and queries as vectors comprising average term term frequency inverse sentence frequency (TF-ISF) weights instead of representing them as v
... Show MoreDigital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection aft
... Show MoreThis investigation aimed to explain the mechanism of MFCA by applying this method on air-cooled engine factory which was suffering from high production cost. The results of this study revealed that MFCA is a useful tool to identify losses and inefficiencies of the production process. It is found that the factory is suffering from high losses due to material energy and system losses. In conclusion, it is calculated that system losses are the highest among all the losses due to inefficient use of available production capacity.
In this paper, The transfer function model in the time series was estimated using different methods, including parametric Represented by the method of the Conditional Likelihood Function, as well as the use of abilities nonparametric are in two methods local linear regression and cubic smoothing spline method, This research aims to compare those capabilities with the nonlinear transfer function model by using the style of simulation and the study of two models as output variable and one model as input variable in addition t
... Show MoreAbstract
The public budget in Iraq is still prepared according to the traditional base that allocates the amounts of budget the current year based on the budget of previous year with an increase in estimations with random proportions without connecting the input (financial, human resources and asset )with their output (quantitatively and qualitatively)this caused waste and lose in the available resources therefore the output of budget showed be adapted is such a way that achieving connection between its input and output and to be appropriate with the organizational structure of the state without intrinsic change in its work .this may be realized by adopting the accounting of
... Show MoreThe denoising of a natural image corrupted by Gaussian noise is a problem in signal or image processing. Much work has been done in the field of wavelet thresholding but most of it was focused on statistical modeling of wavelet coefficients and the optimal choice of thresholds. This paper describes a new method for the suppression of noise in image by fusing the stationary wavelet denoising technique with adaptive wiener filter. The wiener filter is applied to the reconstructed image for the approximation coefficients only, while the thresholding technique is applied to the details coefficients of the transform, then get the final denoised image is obtained by combining the two results. The proposed method was applied by usin
... Show More