Preferred Language
Articles
/
B0KtSJoBMeyNPGM3_MDK
The operational matrices for Elliptic Partial Differential Equations with mixed boundary conditions
...Show More Authors
Abstract<p>The purpose of this research is to implement the orthogonal polynomials associated with operational matrices to get the approximate solutions for solving two-dimensional elliptic partial differential equations (E-PDEs) with mixed boundary conditions. The orthogonal polynomials are based on the Standard polynomial (<italic>x<sup>i</sup> </italic>), Legendre, Chebyshev, Bernoulli, Boubaker, and Genocchi polynomials. This study focuses on constructing quick and precise analytic approximations using a simple, elegant, and potent technique based on an orthogonal polynomial representation of the solution as a double power series. Consequently, a linear partial differential equation is transformed into a linear algebraic system which is solved by the Mathematica®12. Approximate solutions can be found if the answers are polynomials in and of itself. Three applications involving well-known linear problems Laplace, Poisson, and Helmholtz equations have been solved by using the proposed methods, and a comparison of the approaches has been provided. Furthermore, the computation of the error norm <italic>L<sub>∞</sub> </italic> has been done to show the accuracy of the suggested approaches. The results clearly demonstrate how precise, efficient, and dependable the proposed methods are in obtaining rough solutions to the problem. Bernoulli was one of the best methods in most examples.</p>
Scopus Crossref
View Publication
Publication Date
Thu May 30 2024
Journal Name
Journal Of Interdisciplinary Mathematics
Analytical approximate solutions of random integro differential equations with laplace decomposition method
...Show More Authors

An efficient combination of Adomian Decomposition iterative technique coupled with Laplace transformation to solve non-linear Random Integro differential equation (NRIDE) is introduced in a novel way to get an accurate analytical solution. This technique is an elegant combination of theLaplace transform, and the Adomian polynomial. The suggested method will convert differential equations into iterative algebraic equations, thus reducing processing and analytical work. The technique solves the problem of calculating the Adomian polynomials. The method’s efficiency was investigated using some numerical instances, and the findings demonstrate that it is easier to use than many other numerical procedures. It has also been established that (LT

... Show More
Scopus (3)
Scopus
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Approximated Methods for Linear Delay Differential Equations Using Weighted Residual Methods
...Show More Authors

The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).

View Publication Preview PDF
Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
First Order Nonlinear Neutral Delay Differential Equations
...Show More Authors

The author obtain results on the asymptotic behavior of the nonoscillatory solutions of first order nonlinear neutral differential equations. Keywords. Neutral differential equations, Oscillatory and Nonoscillatory solutions.

View Publication Preview PDF
Publication Date
Tue May 01 2012
Journal Name
Engineering Analysis With Boundary Elements
Radial integration boundary integral and integro-differential equation methods for two-dimensional heat conduction problems with variable coefficients
...Show More Authors

View Publication
Crossref (35)
Crossref
Publication Date
Fri Aug 30 2024
Journal Name
Iraqi Journal Of Science
The Dissipation of the Kinetic Energy for 2D Bounded Flow by Using Moment-Based Boundary Conditions with Burnett Order Stress for LBM
...Show More Authors

     In this article, the lattice Boltzmann method with two relaxation time  (TRT)  for the  D2Q9 model is used to investigate numerical results for 2D flow. The problem is performed to show the dissipation of the kinetic energy rate and its relationship with the enstrophy growth for 2D dipole wall collision. The investigation is carried out for normal collision and oblique incidents at an angle of . We prove the accuracy of moment -based boundary conditions with slip and Navier-Maxwell slip conditions to simulate this flow. These conditions are under the effect of Burnett-order stress conditions that are consistent with the discrete Boltzmann equation. Stable results are found by using this kind of boundary condition where d

... Show More
Scopus Crossref
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
Convergence of the Generalized Homotopy Perturbation Method for Solving Fractional Order Integro-Differential Equations
...Show More Authors

In this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Oscillations of First Order Linear Delay Differential Equations with positive and negative coefficients
...Show More Authors

Oscillation criteria are obtained for all solutions of the first-order linear delay differential equations with positive and negative coefficients where we established some sufficient conditions so that every solution of (1.1) oscillate. This paper generalized the results in [11]. Some examples are considered to illustrate our main results.

View Publication Preview PDF
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Oscillation of Nonlinear First Order Neutral Differential Equations
...Show More Authors

In this paper, the author established some new integral conditions for the oscillation of all solutions of nonlinear first order neutral delay differential equations. Examples are inserted to illustrate the results.

View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
A novelty Multi-Step Associated with Laplace Transform Semi Analytic Technique for Solving Generalized Non-linear Differential Equations
...Show More Authors

 

   In this work, a novel technique to obtain an accurate solutions to nonlinear form by multi-step combination with Laplace-variational approach (MSLVIM) is introduced. Compared with the  traditional approach for variational it overcome all difficulties and enable to provide us more an accurate solutions with extended of the convergence region as well as covering to larger intervals which providing us a continuous representation of approximate analytic solution and it give more better information of the solution over the whole time interval. This technique is more easier for obtaining the general Lagrange multiplier with reduces the time and calculations. It converges rapidly to exact formula with simply computable terms wit

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Feb 07 2018
Journal Name
Proceedings Of The 2018 4th International Conference On Mechatronics And Robotics Engineering
Secure Transition for Robotic Surgery With Elliptic Curve Diffie Hellman
...Show More Authors

View Publication
Scopus Crossref