In this work, the nuclear electromagnetic moments for the ground and low-lying excited states for sd shell nuclei have been calculated, resulting in a revised database with 56 magnetic dipole moments and 41 electric quadrupole moments. The shell model calculations are performed for each sd isotope chain, considering the sensitivity of changing the sd two-body effective interactions USDA, USDE, CWH and HBMUSD in the calculation of the one-body transition density matrix elements. The calculations incorporate the single-particle wave functions of the Skyrme interaction to generate a one-body potential in Hartree–Fock theory to calculate the single-particle matrix elements. For most sd shell nuclei, the experimental data are well reproduced, except for those spans near the island of inversion. In order to interpret the structure of low-lying excited states, the electric quadrupole and magnetic dipole transition form factors and the corresponding reduced transition probabilities in the sd shell nuclei have also been calculated, for which the experimental data are available. The present results demonstrate the nuclear electromagnetic moments’ sensitivity to many forms of the understanding of nucleon–nucleon interactions and provide a crucial baseline for future improvements in conceptual calculations.
Two simple methods for the determination of eugenol were developed. The first depends on the oxidative coupling of eugenol with p-amino-N,N-dimethylaniline (PADA) in the presence of K3[Fe(CN)6]. A linear regression calibration plot for eugenol was constructed at 600 nm, within a concentration range of 0.25-2.50 μg.mL–1 and a correlation coefficient (r) value of 0.9988. The limits of detection (LOD) and quantitation (LOQ) were 0.086 and 0.284 μg.mL–1, respectively. The second method is based on the dispersive liquid-liquid microextraction of the derivatized oxidative coupling product of eugenol with PADA. Under the optimized extraction procedure, the extracted colored product was determined spectrophotometrically at 618 nm. A l
... Show MoreAccurate description of thermodynamic, structural, and electronic properties for bulk and surfaces of ceria (CeO2) necessitates the inclusion of the Hubbard parameter (U) in the density functional theory (DFT) calculations to precisely account for the strongly correlated 4f electrons. Such treatment is a daunting task when attempting to draw a potential energy surface for CeO2-catalyzed reaction. This is due to the inconsistent change in thermo-kinetics parameters of the reaction in reference to the variation in the U values. As an illustrative example, we investigate herein the discrepancy in activation and reaction energies for steps underlying the partial and full hydrogenation of acetyl
... Show MoreBackground: The study was designed to evaluate the effect of local application of exogenous VEGF/collagen I separately and as a combination in socket healing. Sixty male Albino Wistar rats were subjected for a surgical tooth extraction of upper 1st molar of both sides (right side was considered as experimental site, while left be the control one, treated with 1µL of normal saline). The rats were scarified at 3, 7, 14, 28 days post extraction. Socket healing was histologically examined with immunohistochemistochemical localization of ALP&FGF2. Materials and Method: Sixty male Albino Wistar rats were subjected for a surgical tooth extraction of upper 1stmolar of both sides (right side was considered as experimental site, while left be the
... Show MoreThe wave functions of converted harmonic-oscillator in local scaling transformations are employed to evaluate charge distributions and elastic charge electron scattering form structures for 6,7Li, 9Be, 14,15N and 16O nuclei. The nuclear shell-model was fulfilled using Warburton-Brown psd-shell (WBP) interaction with truncation in model space. Very good agreements with the experimental data were obtained for the aforementioned quantities.
The spread of novel coronavirus disease (COVID-19) has resulted in chaos around the globe. The infected cases are still increasing, with many countries still showing a trend of growing daily cases. To forecast the trend of active cases, a mathematical model, namely the SIR model was used, to visualize the spread of COVID-19. For this article, the forecast of the spread of the virus in Malaysia has been made, assuming that all Malaysian will eventually be susceptible. With no vaccine and antiviral drug currently developed, the visualization of how the peak of infection (namely flattening the curve) can be reduced to minimize the effect of COVID-19 disease. For Malaysians, let’s ensure to follow the rules and obey the SOP to lower the