In this work, the nuclear electromagnetic moments for the ground and low-lying excited states for sd shell nuclei have been calculated, resulting in a revised database with 56 magnetic dipole moments and 41 electric quadrupole moments. The shell model calculations are performed for each sd isotope chain, considering the sensitivity of changing the sd two-body effective interactions USDA, USDE, CWH and HBMUSD in the calculation of the one-body transition density matrix elements. The calculations incorporate the single-particle wave functions of the Skyrme interaction to generate a one-body potential in Hartree–Fock theory to calculate the single-particle matrix elements. For most sd shell nuclei, the experimental data are well reproduced, except for those spans near the island of inversion. In order to interpret the structure of low-lying excited states, the electric quadrupole and magnetic dipole transition form factors and the corresponding reduced transition probabilities in the sd shell nuclei have also been calculated, for which the experimental data are available. The present results demonstrate the nuclear electromagnetic moments’ sensitivity to many forms of the understanding of nucleon–nucleon interactions and provide a crucial baseline for future improvements in conceptual calculations.
The insulation system of a machine coil includes several layers made of materials with different characteristics. The effective insulation design of machine coils, especially in the machine end winding, depends upon an accurate model of the stress grading system. This paper proposes a modeling approach to predict the transient overvoltage, electric field, and heat generation in machine coils with a stress grading system, considering the variation of physical properties in the insulation layers. A non-uniform line model is used to divide the coil in different segments based on material properties and lengths: overhang, stress grading and slot. The cascaded connection of chain matrices is used to connect segments for the representation of the
... Show MoreThis paper presents ABAQUS simulations of fully encased composite columns, aiming to examine the behavior of a composite column system under different load conditions, namely concentric, eccentric with 25 mm eccentricity, and flexural loading. The numerical results are validated with the experimental results obtained for columns subjected to static loads. A new loading condition with a 50 mm eccentricity is simulated to obtain additional data points for constructing the interaction diagram of load-moment curves, in an attempt to investigate the load-moment behavior for a reference column with a steel I-section and a column with a GFRP I-section. The result comparison shows that the experimental data align closely with the simulation
... Show MoreToday technology using nanoparticle when treatment pathogentic microorganism and we focused on this here. It was found that the species of streptococcus used in present study were sensitive to erythromycin. In present study focusing biofilm formation by Streptococcus spp was evaluated. Species S. mutans was found that highest amount of biofilm compare with the other species. The aim of report effect (SNPs) on ability of biofilm form different species of streptococcus. The anti-biofilm effect of SNPs was in concentration dependent manner. The highest effect of SNP against biofilm formation was found the concentration 160 μg/ml, while the lowest effect was found the lowest used concentration (80 μg/ml) of SNPs. In vivo study revealed that s
... Show MoreOff-nucleus isotropic magnetic shielding (σiso(r)) and multi-points nucleus independent chemical shift (NICS(0-2 Å)) index were utilized to find the impacts of the isomerization of gas-phase furfuraldehyde (FD) on bonding and aromaticity of FD. Multidimensional (1D to 3D) grids of ghost atoms (bqs) were used as local magnetic probes to evaluate σiso(r) through gauge-including atomic orbitals (GIAO) at density functional theory (DFT) and B3LYP functional/6-311+G(d,p) basis set level of theory. 1D σiso(r) responses along each bond of FD were examined. Also, a σiso(r) 2D-scan was performed to obtain σiso(r) behavior at vertical heights of 0–1 Å above the FD plane in its cis, transition state (TS) and trans forms. New techniques fo
... Show MoreThe present study was conducted to estimate the antimicrobial activity and the potential biological control of the killer toxin produced by
The nucleon momentum distributions (NMD) for the ground state and elastic electron scattering form factors have been calculated in the framework of the coherent fluctuation model and expressed in terms of the weight function (fluctuation function). The weight function has been related to the nucleon density distributions of nuclei and determined from theory and experiment. The nucleon density distributions (NDD) is derived from a simple method based on the use of the single particle wave functions of the harmonic oscillator potential and the occupation numbers of the states. The feature of long-tail behavior at high momentum region of the NMD has been obtained using both the theoretical and experimental weight functions. The observed ele
... Show MoreThe ground state proton, neutron and matter densities of exotic 11Be and 15C nuclei are studied by means of the TFSM and BCM. In TFSM, the calculations are based on using different model spaces for the core and the valence (halo) neutron. Besides single particle harmonic oscillator wave functions are employed with two different size parameters Bc and Bv. In BCM, the halo nucleus is considered as a composite projectile consisting of core and valence clusters bounded in a state of relative motion. The internal densities of the clusters are described by single particle Gaussian wave functions.
Elastic electron scattering proton f
... Show More