Background: We aimed to investigate the accuracy of salivary matrix metalloproteinases (MMP)-8 and -9, and tissue inhibitor of metalloproteinase (TIMP)-1 in diagnosing periodontitis and in distinguishing periodontitis stages (S)1 to S3. Methods: This study was a case–control study that included patients with periodontitis S1 to S3 and subjects with healthy periodontia (controls). Saliva was collected, and then, clinical parameters were recorded, including plaque index, bleeding on probing, probing pocket depth, and clinical attachment level. Diagnosis was confirmed by assessing the alveolar bone level using radiography. Salivary biomarkers were assayed using an enzyme-linked immunosorbent assay. Results: A total of 45 patients (15 for each stage) and 18 healthy subjects as controls were included. The levels of all salivary biomarkers and clinical parameters were significantly higher in periodontitis subjects than in the controls. The ROC curve showed that MMP-8, MMP-9, TIMP-1, MMP-8/TIMP-1, and MMP-9/TIMP-1 had statistically significant diagnostic accuracy, with areas under the curve (AUCs) of 0.892, 0.844, 0.920, 0.986, and 1.000, respectively, when distinguishing periodontitis from the controls. Similarly, these biomarkers showed significant diagnostic accuracy in the differentiation of S1 periodontitis from the controls (AUC range from 0.902 to 1.000). Conclusions: This study suggested that salivary biomarkers exhibited high diagnostic accuracy in distinguishing periodontal health from periodontitis in general as well as S1 periodontitis. Furthermore, TIMP-1 could differentiate S1 from S3.
In this paper, we design a fuzzy neural network to solve fuzzy singularly perturbed Volterra integro-differential equation by using a High Performance Training Algorithm such as the Levenberge-Marqaurdt (TrianLM) and the sigmoid function of the hidden units which is the hyperbolic tangent activation function. A fuzzy trial solution to fuzzy singularly perturbed Volterra integro-differential equation is written as a sum of two components. The first component meets the fuzzy requirements, however, it does not have any fuzzy adjustable parameters. The second component is a feed-forward fuzzy neural network with fuzzy adjustable parameters. The proposed method is compared with the analytical solutions. We find that the proposed meth
... Show MoreCo-composting process can be acquired by combining organic fraction of municipal solid waste (OFMSW) with sewage sludge (SS) and mature compost (MC) as enhancement and bulking agent to overcome the problems of municipal solid waste and wastewater treatment plants besides the finally produced fertilizer usage for agriculture and horticulture. The effects of different mixture ratios of (OFMSW), (SS) and (MC) on the performance of composting process were investigated in this study. Piles of about 10 kg were prepared by mixing OFMSW, SS and MC in three different ratios (w/w) [OFMSW: SS: MC= 3:1:1, 3:2:1, and 3:3:1]. Results showed that the pile [3:1:1] was most beneficial to composting. The final compost products contained a
... Show MoreIn some cases, surgeons need to navigate through the computer system for reconfirmation patients’ details and unfortunately surgeons unable to manage both computer system and operation at the same time. In this paper we propose a solution for this problem especially designed for heart surgeon, by introducing voice activation system with 3D visualization of Angiographic images, 2D visualization of Echocardiography processed video and selected patient’s details. In this study, the processing, approximation of the 3D angiography and the visualization of the 2D echocardiography video with voice recognition control are the most challenging work. The work involve with predicting 3D coronary three from 2D angiography image and also image enhan
... Show MoreIn any natural area or water body, evapotranspiration is one of the main outcomes in the water balance equation. It is also a crucial component of the hydrologic cycle and considers as the main requirement in the planning and designing of any irrigation project. The climatic parameters for the Ishaqi area are calculated from the available date of Samarra and Al-Khlais meteorological stations according to a method for the period (1982–2017) according to Fetter method. The results of the mean of rainfall, relative humidity temperature, evaporation, sunshine, and wind speed of the Ishaqi area are 171.96 mm, 49.67%, 24.86 C°, 1733.61 mm, 8.34 h/day, and 2.3 m/sec, respectively. Values of Potential Evapotranspiration are determined by
... Show MoreThis paper proposes a self organizing fuzzy controller as an enhancement level of the fuzzy controller. The adjustment mechanism provides explicit adaptation to tune and update the position of the output membership functions of the fuzzy controller. Simulation results show that this controller is capable of controlling a non-linear time varying system so that the performance of the system improves so as to reach the desired state in a less number of samples.
This paper presents a fuzzy logic controller for a two-tank level control system, which is a process with a dead time. The fuzzy controller is a proportional-integral (PI-like) fuzzy controller which is suitable for steady state behavior of the system. Transient behavior of the system was improved without the need for a derivative action by suitable change in the rule base of the controller. Simulation results showed the step response of the two-tank level control system when this controller was used to control this plant and the effect of the dead time on the response of the system.
Rock mechanical properties are critical parameters for many development techniques related to tight reservoirs, such as hydraulic fracturing design and detecting failure criteria in wellbore instability assessment. When direct measurements of mechanical properties are not available, it is helpful to find sufficient correlations to estimate these parameters. This study summarized experimentally derived correlations for estimating the shear velocity, Young's modulus, Poisson's ratio, and compressive strength. Also, a useful correlation is introduced to convert dynamic elastic properties from log data to static elastic properties. Most of the derived equations in this paper show good fitting to measured data, while some equations show scatters
... Show More