A non-zero submodule N of M is called essential if N L for each non-zero submodule L of M. And a non-zero submodule K of M is called semi-essential if K P for each non-zero prime submodule P of M. In this paper we investigate a class of submodules that lies between essential submodules and semi-essential submodules, we call these class of submodules weak essential submodules.
In this paper, we define a new type of pairwise separation axioms called pairwise semi-p- separation axioms in bitopological spaces, also we study some properties of these spaces and relationships of each one with the ordinary separation axioms in the bitopological spaces.
In this paper, we introduce a type of modules, namely S-K-nonsingular modules, which is a generalization of K-nonsingular modules. A comprehensive study of these classes of modules is given.
In this paper, a new class of sets, namely ï¡- semi-regular closed sets is introduced and studied for topological spaces. This class properly contains the class of semi-ï¡-closed sets and is property contained in the class of pre-semi-closed sets. Also, we introduce and study ï¡srcontinuity and ï¡sr-irresoleteness. We showed that ï¡sr-continuity falls strictly in between semi-ï¡- continuity and pre-semi-continuity.
In this paper, we investigate prime near – rings with two sided α-n-derivations
satisfying certain differential identities. Consequently, some well-known results
have been generalized. Moreover, an example proving the necessity of the primness
hypothesis is given.
Let R be a ring with identity and let M be a left R-module. M is called µ-lifting modulei f for every sub module A of M, There exists a direct summand D of M such that M = D D', for some sub module D' of M such that A≤D and A D'<<µ D'. The aim of this paper is to introduce properties of µ-lifting modules. Especially, we give characterizations of µ-lifting modules. On the other hand, the notion of amply µ-supplemented iis studied as a generalization of amply supplemented modules, we show that if M is amply µ-supplemented such that every µ-supplement sub module of M
... Show MoreThroughout this paper, T is a ring with identity and F is a unitary left module over T. This paper study the relation between semihollow-lifting modules and semiprojective covers. proposition 5 shows that If T is semihollow-lifting, then every semilocal T-module has semiprojective cover. Also, give a condition under which a quotient of a semihollow-lifting module having a semiprojective cover. proposition 2 shows that if K is a projective module. K is semihollow-lifting if and only if For every submodule A of K with K/( A) is hollow, then K/( A) has a semiprojective cover.
Let be a commutative ring with unity and let be a non-zero unitary module. In
this work we present a -small projective module concept as a generalization of small
projective. Also we generalize some properties of small epimorphism to δ-small
epimorphism. We also introduce the notation of δ-small hereditary modules and δ-small
projective covers.
In this paper, we introduce and study the concepts of hollow – J–lifting modules and FI – hollow – J–lifting modules as a proper generalization of both hollow–lifting and J–lifting modules . We call an R–module M as hollow – J – lifting if for every submodule N of M with is hollow, there exists a submodule K of M such that M = K Ḱ and K N in M . Several characterizations and properties of hollow –J–lifting modules are obtained . Modules related to hollow – J–lifting modules are given .
In this work we study gamma modules which are implying full stability or implying by full stability. A gamma module is fully stable if for each gamma submodule of and each homomorphism of into . Many properties and characterizations of these classes of gamma modules are considered. We extend some results from the module to the gamma module theories.