Weak Essential Submodules

Mona A. Ahmed*

Date of acceptance 19/1/2009

Abstract:

A non-zero submodule N of M is called essential if $N \cap L \neq 0$ for each non-zero submodule L of M. And a non-zero submodule K of M is called semi-essential if $K \cap P \neq 0$ for each non-zero prime submodule P of M. In this paper we investigate a class of submodules that lies between essential submodules and semi-essential submodules, we call these class of submodules weak essential submodules.

Keywords: Semi-prime submodules, Essential submodules, Uniform modules.

ξ0. Introduction

Let R be a commutative ring with identity 1, and let M be a unitary (left) R-module.In this work we assume that every submodule of M contained in a semi-prime submodule of M. A non- non-zero submodule N of M is called essential if $N \cap L \neq (0)$ for every non-zero submodule L of M [1], and a proper submodule P of M is called prime if for each $m \in M$ and $r \in R$ whenever $rm \in M$, then either $m \in M$ or $r \in [P:M]$ [2]. A non-zero submodule K of M is called semi-essential if $K \cap P \neq (0)$ for each non-zero prime submodule P of M [3]. In this paper we investigate a class of submodules that lies between essential submodules and semi-essential submodules, we call this class of submodules, weak essential submodules.

ξ1. Notations And Basic Results:

Recall that a submodule S of an R-module M is called semi-prime if for each $r \in \mathbb{R}$ and $m \in M$ with $r^k x \in N, k \in Z_+$ then $rx \in \mathbb{N}$ [4]. Equivalently, if $r^2 x \in N$ then $rx \in \mathbb{N}$ [5]. In this section we study

some properties of weak essential submodules.

(1.1) **Definition:** Let M be an R-module. A non-zero W of M is called weak essential if $W \cap S \neq (0)$ for each non-zero semi-prime submodule S of M.

It is clear that every essential submodule is weak essential and the converse is not true in general for example: In the Z-module Z_{36} , the submodule $\overline{(9)}$ of Z_{36} is weak essential but not essential in fact $\overline{(9)} \cap \overline{(2)} \neq (0)$, $\overline{(9)} \cap \overline{(3)} \neq (0)$ and $\overline{(9)} \cap \overline{(6)} \neq (0)$ where $\overline{(2)},\overline{(3)}$ and $\overline{(6)}$ are the only non-zero semi-prime submodules of Z_{36} . But $\overline{(9)} \cap \overline{(12)} = (0)$, therefore $\overline{(9)}$ is not essential submodule of Z_{36} . On the other hand every weak essential submodule is semi-essential, but the converse is not true as in the following example: In the Z-module $M=Z\oplus Z$, the only prime submodule are of the form $Z \oplus PZ$ and $PZ \oplus Z$ where P is the prime number. The submodule N=(0) \oplus Z of M is semi-essential but not weak essential, since $N \cap 2Z \oplus (0) = (0)$ where 2Z⊕ (0)is semi-prime submodule of M not prime submodule.

The following proposition is another characterization of weak essential submodules. Compare with[1].

(1.2) **Proposition:**Let M be an R-module. A non-zero submodule W of M is weak essential if and only if for each non-zero semi-prime submodule S of M there exists $x \in S$ and $r \in R$, such that $(0) \neq rx \in W$.

Proof: Suppose that for each non-zero semi-prime submodule S of M, there exists $x \in S$ and $r \in R$ such that $(0) \neq rx \in W$. Not that $rx \in S$, therefore $(0) \neq rx \in W \cap S$. Thus $W \cap S \neq (0)$, that is W is a weak essential. Conversely, suppose that W is a weak essential submodule of M. Then $W \cap S \neq (0)$ for each semi-prime submodule S of M, thus there exists $(0) \neq x \in W \cap S$. This implies that $x \in W$ and hence $(0) \neq 1.x \in W$.

Α submodule N is called irreducible if for each two submodules L_1 and L_2 of M such that $L_1 \cap L_2 = N$, then either $L_1=N$ or $L_2=N$ [4].We can show that if every semi-prime submodule of M is irreducible then a semi-essential submodule is weak essential as in the following proposition. Before that we need the following lemma which the proof can be seen in [5].

(1.3) Lemma: Let S be an irreducible submodule of M. Then S is semi-prime if and only if S is prime submodule.

(1.4) **Proposition**: Let M be an Rmodule such that every semi-prime submodule of M is irreducible. If a submodule W of M is semi-essential then W is a weak essential submodule of M.

Proof: Let S be a non-zero semi-prime submodule of M with $W \cap S = (0)$. Since S is irreducible submodule then by (1.3), S is prime submodule. But W

is semi-essential submodule of M, therefore S = (0).

(1.5) Remarks:

1. If W is a weak essential submodule and N is a submodule of W then N need not be weak essential. For example: consider the Z-module Z_{36} , the submodule $\overline{(2)}$ of Z_{36} is weak essential but the submodule $\overline{(18)}$ of $\overline{(2)}$ is not weak essential since $\overline{(18)} \cap \overline{(12)} = \overline{(0)}$ where $\overline{(12)}$ is a semi-prime submodule of $\overline{(2)}$.

2. Let M be an R-module and let W_1 and W_2 be submodules of M such that $W_1 \subseteq W_2$. If W_1 is a weak essential submodule of M then W_2 is weak essential submodule of M.

3. Let M be an R-module, and let W_1 and W_2 be submodules of M, if $W_1 \cap W_2$ is a weak essential submodule of M, then both of W_1 and W_2 are weak essential submodules of M.

Proof:

(2).Assume that $W_2 \cap S = (0)$, for some semi-prime submodule S of M, then $W_1 \cap S = (0)$. But W_1 is a weak essential submodule of M, therefore S = (0) and hence we are done.

(3). Follows immediately from (2).

The converse of (3) is not true in general for example, in the Zmodule Z_{36} the only non-zero semiprime submodules are only $\overline{(2)}$, $\overline{(3)}$ and $\overline{(6)}$. Both of $\overline{(12)}$ and $\overline{(18)}$ are weak essential submodules, but the intersection $\overline{(12)} \cap \overline{(18)} = \overline{(0)}$ is not weak essential submodule of Z_{36} .

Under some conditions the converse of (3) will be true as in the following two propositions.

(1.6) **Proposition:** Let M be an R-module and let W_1 and W_2 be

submodules of M such that W_1 is an essential submodule of M, and W_2 is weak essential submodule of M. Then $W_1 \cap W_2$ is weak essential submodule of M.

Proof: Since W_2 is a weak essential submodule of M, then $W_2 \cap S \neq (0)$ for each non-zero semi-prime submodule S of M. But W_1 is an essential submodule of M, so $W_1 \cap (W_2 \cap S)$ $\neq (0)$, this implies that $(W_1 \cap W_2) \cap S$ $\neq (0)$, thus we get the result.

(1.7) **Proposition:** Let M be an Rmodule and let W_1 and W_2 be submodules of M such that one of them does not contained in any semiprime submodule of M. If W_1 and W_2 are weak essential submodules of M, then $W_1 \cap W_2$ is weak essential submodule of M.

Proof: Suppose that there exists a semi-prime submodule S of M such that $(W_1 \cap W_2.) \cap S = (0)$ Then $W_1 \cap (W_2 \cap S) = (0)$. By assumption either W_1 or W_2 is not contained in S. If $W_2 \not\subset S$, then $W_2 \cap S$ is semi-prime submodule of W_2 [5]. But W_1 is weak essential submodule of M, so $W_2 \cap S = (0)$. Also W_2 is weak essential submodule of M, therefore S = (0).

ξ 2. Weak essential homomorphisms:

This section is devoted to study weak essential homomorphisms, we start by the following definition.

(2.1) **Definition:** Let M_1 and M_2 be two R-modules. An R-homomorphism f: $M_1 \rightarrow M_2$ is called essential homomorphism if f (M_1) is a weak essential submodule of M_2 .

(2.2) **Remark:** Let M be an R-module and let W be a submodule of M. W is weak essential submodule if and only if the inclusion homomorphism i: W \rightarrow M is weak essential homomorphism.

Compare the following proposition with [6].

(2.3) **Proposition:** Let M_1 and M_2 be R-modules and let f: $M_1 \rightarrow M_2$ be an R-epimorphism, then:

1. If W_1 is a weak essential submodule of M_1 , then $f(W_1)$ is weak essential submodule of M_2

2. If W_2 is a weak essential submodule of M_2 such that ker (f) $\subseteq S_1$ for each semi-prime submodule S_1 of M_1 , then $f^{-1}(W_2)$ is weak essential submodule of M_1 .

Proof:

1. Let S_2 be a non-zero semi-prime submodule of M_2 , then $f^{-1}(S_2)$ is semiprime submodule of M_1 [5]. But W_1 is weak essential submodule of M_1 , thus $W_1 \cap f^{-1}(S_2) \neq (0)$ and hence f (W_1) $\cap S_2 \neq (0)$.

2. Suppose there exists a non-zero semi-prime submodule S_1 of M_1 such that $f^{-1}(W_2) \cap S_1 = (0)$, this implies that $W_2 \cap f(S_1) = (0)$.But S_1 is semi-prime submodule with ker(f) $\subseteq S_1$, so $f(S_1)$ is semi-prime submodule of M_2 [5]. But W_2 is weak essential submodule of M_2 , therefore $f(S_1) = (0)$ which implies that $S_1 \subseteq \text{ker}(f) \subseteq f^{-1}(W_2)$, and hence $S_1 = f^{-1}(W_2) \cap S_1 = (0)$.

Analogue of proposition (2.3.6) in [7] we can prove the following lemma which we need it in the next theorem.

(2.4) Lemma: Let M_1 and M_2 be Rmodules and let W_2 be a semi-prime submodule of M_2 such that $Hom_R(M_1, W_2) \subset Hom_R(M_1, M_2)$, then $Hom_R(M_1, W_2)$ is semi-prime submodule of $Hom_R(M_1, M_2)$.

Proof: Let $r \in \mathbb{R}$ and $f \in Hom_R(M_1, M_2)$ such that $r^2 f \in Hom_R(M_1, W_2)$ then for each $x \in M_1$, $r^2 f(x) \in W_2$. But W_2 is semi-prime submodule of M_2 , so $rf(x) \in W_2$, hence $rf \in Hom_R(M_1, W_2)$.

(2.5) **Theorem:** Let M_1 and M_2 be Rmodules, and let $Hom_R(M_1, W_2)$ be a proper submodule of $Hom_R(M_1, M_2)$ for any submodule W_2 of M_2 . If $Hom_R(M_1, W_2)$ is weak essential submodule of $Hom_R(M_1, M_2)$, then W_2 is weak essential submodule of M_2 .

Proof: Let S_2 be a non-zero semiprime submodule of M₂.By (2.4), $Hom_{R}(M_{1}, S_{2})$ is semi-prime submodule of $Hom_{\mathbb{R}}(M_1, M_2)$. But $Hom_{\mathbb{R}}(M_1, W_2)$ is weak essential submodule of $Hom_{R}(M_{1}, M_{2})$ then by (1.2), there exists $0 \neq f \in Hom_R(M_1, S_2)$ 0≠r∈R such that and 0≠rf∈ $Hom_{\mathbb{R}}(M_1, W_2)$, that is $rf(m) \in W_2$ for each $m \in M_1$. So for each non-zero semi-prime submodule S_2 of M_2 we find $f(m) \in S_2$ for each $m \in M_1$ and we find $r \in R$ with $0 \neq rf(m) \in W_2$ i.e. W_2 is essential submodule of M₂.

(2.6) Corollary: Let M be an R-module and let W be a submodule of M .If $Hom_R(M,W)$ is weak essential submodule of $Hom_R(M,M)$, then W is weak essential submodule of M.

ξ 3. Weak essential submodules in multiplication modules

Recall that an R-module M is called multiplication if for each submodule N of M there exists an ideal I of R such that N=IM [8].].A nonzero ideal I of R is called weak essential if $I \cap S \neq (0)$ for each non-zero semi-prime ideal S of R.

(3.1) **Proposition:** Let M be a finitely generated faithful multiplication module. And let W be a submodule of M such that W=IM for some ideal I of R. If W is a weak essential submodule of M then I is weak essential ideal of R.

Proof: Suppose that $I \cap S = (0)$ for some non-zero semi-prime ideal S of R. Since M is a faithful multiplication module, then $(0) = (I \cap S) M = IM \cap SM$. Also since S is semi-prime submodule, and M is finitely generated multiplication module so by [5], SM is semi-prime submodule of M. On the other hand W=IM is weak essential submodule of M, therefore SM = (0). But M is faithful module then S = (0).

Under some conditions the converse of (3.2) is true as in the following two propositions.

(3.2) **Proposition:** Let M be a faithful multiplication module and let W be submodule of M such that W=IM. Suppose that every non-zero proper semi-prime submodule of M is irreducible. If I is weak essential ideal of R then W is a weak essential submodule of M.

Proof: Suppose that $W \cap S = (0)$ for some non-zero proper semi-prime submodule S of M. By assumption S is an irreducible submodule of M, so by (1.3), S is prime submodule. But S is a proper submodule of the multiplication module M, this implies that there exists a prime ideal P of R such that S=PM [8]. Now (0) = $W \cap S = IM \cap PM = (I \cap P)$ M. But M is faithful multiplication module, therefore $I \cap P = (0)$. Since every prime submodule is semi-prime submodule, and by assumption we get P=(0). But S=PM therefore S = (0).

(3.3) **Proposition:** Let M be a faithful multiplication module and let W be submodule of M such that W=IM. Suppose that every non-zero proper semi-prime submodule of M is primary. If I is weak essential ideal of R then W is weak essential submodule of M.

Proof: Suppose that $W \cap S = (0)$ for some non-zero proper semi-prime submodule S of M. By assumption S is a primary submodule of M. Since M is multiplication module then [S: M] is semi-prime submodule of M [5]. But S is primary submodule of M, therefore S is a prime submodule [6], this implies there exists a prime ideal P of R such that S=PM [8]. Now (0) = $W \cap S = IM \cap PM = (I \cap P)$ M. But M is faithful multiplication

module, therefore $I \cap P = (0)$. Since every prime submodule is semi-prime submodule, and by assumption we get P=(0). But S=PM therefore S = (0).

(3.4) **Proposition:** Let M be a finitely generated faithful multiplication module and let W be a submodule of M. If W is weak essential submodule of M then [W : (m)] is weak essential ideal of R for each $m \in M$. The converse is true if every non-zero proper semi-prime submodule of M is irreducible.

Proof: Assume that W is weak essential submodule of M. By (3.2), [W: M] is weak essential ideal of R. But for each $m \in M$, [W: M] \subseteq [W :(m)]. Since M is faithful multiplication, thus [N: M] M \subseteq [W :(m)] M [8]. This implies that [W :(m)] M is a weak essential submodule of M (1.5) (2). Hence [W :(m)] is weak essential ideal of R (3.2). Conversely, assume that [W :(m)] is a weak essential ideal of R for each $m \in M$, and let S be a semi-prime non-zero proper submodule of M. Since M is a module and multiplication S is irreducible submodule, then by (1.3), S is prime submodule, so there exists a prime ideal P of R such that S=PM [8]. It is clear that P is semi-prime ideal of R, but [W :(m)] is weak essential ideal of R, therefore [W :(m)] $\cap P \neq (0)$. Since M is a faithful multiplication module, then [W: (m)] $M \cap PM \neq (0)$. Thus $W \cap S \neq (0)$ that is W is a weak essential submodule of M.

By the same way we can prove the following.

(3.5) **Proposition:** Let M be a finitely generated faithful multiplication module and let W be a submodule of M. If W is weak essential submodule of M then [W :(m)] is weak essential ideal of R for each $m \in M$. The converse is true if every non-zero proper semi-prime submodule of M is primary.

From the last four propositions we have the following two theorems.

(3.6) Theorem: Let M be a finitely generated faithful multiplication module, and let W be a submodule of M such that W=IM for some ideal I of R. If each non-zero proper semi-prime submodule of M is irreducible, then the following statements are equivalent.

1. W is a weak essential submodule of M.

2. I is a weak essential ideal of R.

3. [W:(m)] is a weak essential ideal of R for each $m \in M$.

Proof: (1) \Rightarrow (2): By (3.2).

(2) \Rightarrow (3): Assume that I is an essential ideal of R. Since M is finitely generated faithful module, then by [5], I = [IM: M]. But [IM:M] \subseteq [IM:(m)] for each m \in M, and [IM:M] is a weak

essential ideal of R, also we consider [IM:M] as an R-module, then by (1.4)(2), [M:(m)] is a weak essential submodule of R, hence we get the result.

(3) ⇒(1): By (3.5).

(3.7) Theorem: Let M be a finitely generated faithful multiplication module, and let W be a submodule of M such that W=IM for some ideal I of R. If each non-zero proper semi-prime submodule of M is primary then the following statements are equivalent.

1. W is a weak essential submodule of M.

2. I is a weak essential ideal of R.

3. [W:(m)] is a weak essential ideal of R for each $m \in M$.

Proof: By the same way of (3.6), only in the direction $(3) \Rightarrow (1)$ we depend on (3.5).

ξ 4. Weak uniform modules

Recall that a non-zero Rmodule M is called uniform if every non-zero submodule of M is an essential submodule [6]. Abdullah, N.K. gave in her thesis [3] a generalization of uniform modules, she name it semi-uniform module that is a module M in which every non-zero submodule is semi-essential. In this we introduce another section generalization of uniform modules in fact this class of modules lies between uniform modules and semi-uniform modules. We call it weak uniform modules. We start by the following definition.

(4.1) **Definition:** A non-zero module M is called weak uniform, if each non-zero submodule of M is weak essential. And a ring R is called uniform ring if it is uniform module as an R-module.

(4.2) Remarks:

1. It is clear that each uniform module is weak uniform module. However, the converse is not true in general, for example: The Z-module Z_{36} is a weak uniform. In fact the only non-zero semi-prime submodule of Z₃₆ $\operatorname{are}(2)$, (3)&(6) and all of them have non-zero intersections with each non trivial submodule of Z_{36} which they are $\overline{(6)}$ and $\overline{(9)}$, $\overline{(12)}$ and (2),(3),(4), $\overline{(18)}$. Therefore all submodules of Z_{36} are weak essential. On the other hand $(18) \cap (12) = (0)$, this mean (18) is not essential submodule of Z_{36} . Thus Z_{36} is not uniform module.

2. Also it can be easy shown that each weak uniform module is semi-uniform. The converse is not true in general. For example the submodule $(\overline{2})$ of \mathbb{Z}_{36} is semi-uniform since the only non-zero semi-prime submodules of $(\overline{2})$ are $(\overline{4})$ & $(\overline{6})$ and the last submodules have non-zero intersections with each non trivial submodule of $(\overline{2})$. On the other hand the submodule $(\overline{2})$ is not weak uniform since it is contain a submodule $(\overline{18})$ which is not weak essential because $(\overline{18}) \cap (\overline{12}) = (0)$ where $(\overline{12})$ is semi-prime submodule of $(\overline{2})$.

It is shown in [3] that the uniform property is hereditary. Now we show by example that the weak uniform property is not hereditary. The Z-module Z_{36} is weak uniform module (4.2) (1). But (3) is not weak uniform submodule of Z_{36} since (12) is not weak essential submodule of (3), the only non-zero semi-prime submodule of (3) are (6), (9) & (18) while (12) \cap (18) = (0).

Compare the following proposition with [3].

(4.3) **Theorem:** Let M be a finitely generated faithful and multiplication R-module. Then M is a weak uniform module if and only if R is weak uniform ring.

Proof: Assume that M is a weak uniform module, and let I be a nonzero ideal of R such $I \cap S = (0)$ for each non-zero semi-prime ideal S of R. Since M is a multiplication module, so $IM \cap SM = (0)$ [9].On the other hand because of M is multiplication and S is a semi-prime ideal of R therefore SM is semi-prime submodule of M [5]. But M is weak uniform module and IM is a submodule of M, so SM = (0). Since M is faithful module, then S = (0) and hence I is weak essential ideal of R. Conversely, let R be a weak uniform ring, and let W be a non-zero submodule of M and S be a non-zero semi-prime submodule of M such that $W \cap S = (0)$. Thus $[W: M] \cap [S: M] =$ (0). But [S: M] is semi-prime ideal of R [5], and R is a weak uniform ring, so [S: M] = (0) which implies that S =(0). That is W is weak essential submodule of M.

(4.4) Theorem: Let M be an R-module and let N be an essential submodule of M such that N does not contained in any semi-prime submodule of M. If N is a weak uniform submodule then M is weak uniform module.

Proof: Let K be any submodule of M with $K \cap S = (0)$ for each non-zero semi-prime submodule S of M. So $N \cap$ $(K \cap S) = (0)$, and then $(N \cap K) \cap (N \cap S) = (0)$. By assumption, $N \not\subset S$ then $N \cap$ S is a semi-prime submodule of N [6]. On the other hand $N \cap K$ is a submodule of N, and N is a weak uniform, therefore $(N \cap S) = (0)$. Since N is essential submodule of M, then S=(0).

(4.5) Corollary: Let M be an R-module such that M does not contained in any semi-prime submodule of E (M). If M is a weak uniform module then E (M) is weak uniform module where E (M) is the injective hull of M.

Proof: By assumption M is an essential submodule of E (M), and by (4.4) we get the result.

References

- 1. Kasch, F.1982, Modules and Rings, Academic press, London.
- Lu, C.P.1984, Prime submodules of modules, Comment.Math.Univ.St. Paul. 33:61-69.
- Abdullah N.K. 2005, Semiessential submodules and semiuniform modules, M. Sc. Thesis, Univ. of Tkrit.
- Dauns, J. and McDonald, B.R.1980, Prime modules and onesided ideals in ring theory and algebra III, Proceedings of the third Oklahoma conference:301-344.
- 5. Athab, E.A.1996, Prime and semiprime submodules, M. Sc. Thesis, Univ. of Baghdad.
- 6. Goodearl, K.R.1976, Ring theory, Marcel Dekker, New York.
- Abdul-Razak, H.M.1999, Quasiprime modules and quasi-prime submodules, M.Sc. Thesis, Univ. of Baghdad.
- 8. Elbast, Z. A. and Smith, P. F. 1988, Multiplication modules, Comm. Algebra Vol. 16:755-774.
- Ahmed, A. A. 1992, on submodules of multiplication modules, M. Sc. Thesis, Univ. of Baghdad.

منی عباس احمد*

* قسم الرياضيات - كلية العلوم للبنات - جامعة بغداد- العراق

المستخلص:

يقال للمقاس الجزئي الغير صفري N من M انه جوهري اذا كان 0≠ N∩L لكل مقاس غيرصفري L في M. كما يقال للمقاس الجزئي الغير صفري K في M انه شبه جوهري اذا كان 0≠ P∩K لكل موديول جزئي غير صفري اولي P في M.في هذا البحث ندرس نوعا اخر من المقاسات الجزئية الجوهرية يقع بين المقاسات الجزئية الجوهرية و المقاسات الجزئية الشبه جوهرية. نطلق على هذه المقاسات الجزئية إسم المقاسات الجزئية الجوهرية الضعيفة.

الكلمات المفتاحية: المقاسات الجزئية شبه الاولية ' المقاسات الجزئية الجوهرية ' المقاسات المنتظمة .