In the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm−2), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD removal efficiency when pH increased or decreased from pH=7. The best conditions were found to be a current density of 12mA/cm2, pH=7 and NaCl concentration of 2g/l at treatment time of 60 minutes, where a maximum COD removal efficiency of 96.8%, phenol removal efficiency of 64.7%, and total dissolved solid (TDS) removal efficiency of 20.6% were obtained at energy consumption of 29.12 kWh/kg COD. The results of the present work gave COD of 8mg/l which is lower than the standard limit for discharging petroleum refinery effluent. The electrocougulation was proven to be efficient and reliable technique for treatment Al-Dewaniya petroleum refinery effluent to get effluent with features in agreement with the standard limits for discharge to environment at lower cost.
Steel fiber aluminum matrix composites were prepared by atomization technique. Different air atomization conditions were considered; which were atomization pressure and distance between sample and nozzle. Tensile stress properties were studied. XRF and XRD techniques were used to study the primary compositions and the structure of the raw materials and the atomized products. The tensile results showed that the best reported tensile strength observed for an atomization pressure equal to 4 mbar and sample to nozzle distance equal to 12 cm. Young modulus results showed that the best result occurred with an air atomization pressure equal to 8 mbar and sample to nozzle distance equal to 16cm
The current study was designed to remove Lead, Copper and Zinc from industrial wastewater using Lettuce leaves (Lactuca sativa) within three forms (fresh, dried and powdered) under some environmental factors such as pH, temperature and contact time. Current data show that Lettuce leaves are capable of removing Lead, Copper and Zinc ions at significant capacity. Furthermore, the powder of Lettuce leaves had highest capability in removing all metal ions. The highest capacity was for Lead then Copper and finally Zinc. However, some examined factors were found to have significant impacts upon bioremoval capacity of studied ions, where best biosorption capacity was found at pH 4, at temperature 50º C and contact time of 1 hour.
The present work aims to study the treatment of oily wastewater by means of forward osmosis membrane bioreactor process. Side stream (external) configuration and submerged (internal) configuration of osmotic membrane bioreactor were performed and investigated. The experimental work for each configuration was carried out continuously over 21 days. The flux behavior of forward osmosis membrane in an osmotic membrane bioreactor (OMBR) was investigated, using NaCl as the draw solution and CTA as FO membrane. The effect of mixed liquor suspended solids (MLSS) concentration and TDS accumulation of bioreactor on water flux and membrane fouling behaviors was detected. The accumulation and rejection of nutrients in the bioreactor (Nitrate, COD,
... Show MorePorous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O
This study deals with the elimination of methyl orange (MO) from an aqueous solution by utilizing the 3D electroFenton process in a batch reactor with an anode of porous graphite and a cathode of copper foam in the presence of granular activated carbon (GAC) as a third pole, besides, employing response surface methodology (RSM) in combination with Box-Behnk Design (BBD) for studying the effects of operational conditions, such as current density (3–8 mA/cm2), electrolysis time (10–20 min), and the amount of GAC (1–3 g) on the removal efficiency beside to their interaction. The model was veiled since the value of R2 was high (>0.98) and the current density had the greatest influence on the response. The best removal efficiency (MO Re%)
... Show MoreBackground: For many decades, the ECG was the
workhorse of non-invasive cardiac test and today although
other techniques provide more details about the structural
anomalies in congenital heart diseases, ECG is likely to be
part of clinical evaluation of patients with such diseases
because it is inexpensive, easy to perform and in certain
situations may be both sensitive and specific.
Objective: this study carried out to identify the pattern of
ECG study in patients with TOF.
Methods: this is a retrospective study of 200 patients
with TOF, referred to Ibn Al-Bitar cardiac center from
April 1993 to May 1999. The diagnosis of TOF established
by echocrdiographic, catheterization and angiographic
study.
Research Summary
Praise be to God, Lord of the worlds, and prayers and peace be upon the most honorable of the prophets and messengers, our master Muhammad, and on the good God and his righteous companions.
For the most truthful hadith is the Book of God Almighty, and the best guidance is the guidance of the Prophet, may God bless him and grant him peace. If any)). Our good predecessor took care of collecting what they were able to collect and arrange from the words of the prophecy issued by our master Muhammad, peace and blessings be upon him, and wrote works on them including forms of support, parts, dictionaries, and mosques. About me, if any, in order to re
The personality of the hero Salah al-Din al-Ayyubi (may God have mercy on him) came from the womb of jihad after difficult travails that the Arab Islamic nation experienced through the jihad of its loyal and honest sons who vowed themselves to God in defense of his religion and law, so between 490 AH - 540 AH outstanding jihadi leaders emerged who took upon themselves the responsibility of jihad and mobilizing the nation's energies To fight its enemies - the Franks, the Crusaders - in the Levant, and those leaders succeeded in achieving impressive victories over the Frankish military effort and regained some cities that were usurped by the Franks. Balak bin Bahram, Suqman, and Jakarmish, but these leaders could not maintain a state of un
... Show MoreThe best optimum temperature for the isolate was 30○C while the pH for the maximum mineral removal was 6. The best primary mineral removal was 100mg/L, while the maximum removal for all minerals was obtained after 8 hrs, and the maximum removal efficiency was obtained after 24 hrs. The results have proved that the best aeration for maximum removal was obtained at rotation speed of 150 rpm/ minute. Inoculums of 5ml/ 100ml which contained 106 cell/ ml showed maximum removal for the isolate.
CuO-ZnO-Al2O3 catalyst was prepared in the ratios of 20:30:50 respectively, using the coprecipitation method of Cu, Zn and Al carbonates from their nitrate solutions dissolved in distilled water by adding sodium bicarbonate as precipitant.The catalyst was identified by XRD and quantitatively analysis to determine the percentages of its components using flame atomic absorption technique. Also the surface area was measured by BET method. The activity of this prepared catalyst was examined through the oxidation of ethanol to acetaldehyde which was evaluated by gas chromatography.