A design for a photovoltaic-thermal (PVT) assembly with a water-cooled heat sink was planned, constructed, and experimentally evaluated in the climatic conditions of the southern region of Iraq during the summertime. The water-cooled heat sink was applied to thermally manage the PV cells, in order to boost the electrical output of the PVT system. A set of temperature sensors was installed to monitor the water intake, exit, and cell temperatures. The climatic parameters including the wind velocity, atmospheric pressure, and solar irradiation were also monitored on a daily basis. The effects of solar irradiation on the average PV temperature, electrical power, and overall electrical-thermal efficiency were investigated. The findings indicate that the PV temperature would increase from 65 to 73 °C, when the solar irradiation increases from 500 to 960 W/m2, with and without cooling, respectively. Meanwhile, the output power increased from 35 to 55 W when the solar irradiation increased from 500 to 960 W/m2 during the daytime. The impact of varying the mass flow rate of cooling water in the range of 4 to 16 L/min was also examined, and it was found that the cell temperature declines as the water flow increases in intensity throughout the daytime. The maximum cell temperature recorded for PV modules without cooling was in the middle of the day. The lowest cell temperature was also recorded in the middle of the day for a PVT solar system with 16 L/min of cooling water.
The ejector refrigeration system is a desirable choice to reduce energy consumption. A Computational Fluid Dynamics CFD simulation using the ANSYS package was performed to investigate the flow inside the ejector and determine the performance of a small-scale steam ejector. The experimental results showed that at the nozzle throat diameter of 2.6 mm and the evaporator temperature of 10oC, increasing boiler temperature from 110oC to 140oC decreases the entrainment ratio by 66.25%. At the boiler temperature of 120oC, increasing the evaporator temperature from 7.5 to 15 oC increases the entrainment ratio by 65.57%. While at the boiler temperature of 120oC and
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreThe article emphasizes that 3D stochastic positive linear system with delays is asymptotically stable and depends on the sum of the system matrices and at the same time independent on the values and numbers of the delays. Moreover, the asymptotic stability test of this system with delays can be abridged to the check of its corresponding 2D stochastic positive linear systems without delays. Many theorems were applied to prove that asymptotic stability for 3D stochastic positive linear systems with delays are equivalent to 2D stochastic positive linear systems without delays. The efficiency of the given methods is illustrated on some numerical examples. HIGHLIGHTS Various theorems were applied to prove the asymptoti
... Show MoreThe distribution of chilled water flow rate in terminal unit is an important factor used to evaluate the performance of central air conditioning unit. A prototype of A/C unit has been made, which contains three terminal units with a complete set of accessories (3-way valve, 2-way valve, and sensors) to study the effect of the main parameters, such as total water flow rate and chilled water supply temperature with variable valve opening. In this work, 40 tests were carried out. These tests were in two groups, 20 test for 3-way valve case and 20 test for 2-way valve case. These tests were performed at three levels of valve opening, total water flow rate and water supply temperature according to the design matrices establis
... Show MoreBackground: Assessment of function of the right side of the heart in cases of left ventricular dysfunction has been widely studied but the sensitive and specific echocardiographic parameter to be tested is still a matter of controversy. Right ventricular function is related to left ventricular function by ventricular independence so function of both should be assessed carefully. The objective of this study was to evaluate the effects of left ventricular systolic dysfunction on right ventricular systolic and diastolic functions and pulmonary pressure using conventional and tissue Doppler echocardiography. Patients and Methods: Sixty patients (39 males and 21 females) with heart failure due to left ventricular systolic dysfunction
... Show MoreThis paper presents experimental results regarding the behaviours of eight simply supported partially prestressed concrete beams with internally unbonded tendons, focusing particularly on the effect of three different variables: concrete compressive strength,
This experiment was holdup in A-Faris poultry farms from 1st March to 11 of Aprile 2019. (ACTH) hormone infusion was tested in this experiment on acid-base regulation in broiler chickens. For 7 days, osmotic pumps dispensed 8 IU of ACTH in saline/kg of BW/d, or the same volume of saline as in ACTH at 1 l/h. On days 0 and 14, after the beginning of the infusions, blood samples were obtained to establish a baseline. The plasma concentrations of Na+, K+, and Cl- were decreased, whereas the partial pressure of CO2, anion gap, corticosterone, mean corpuscular hemoglobin concentration, and blood concentrations of hemoglobin and HCO - were all elevated due to the ACTH administration. When given ACTH, neither blood pH nor plasma Ca2+ levels changed
... Show More