Abstract. Al-Abbawy DAH, Al-Thahaibawi BMH, Al-Mayaly IKA, Younis KH. 2021. Assessment of some heavy metals in various aquatic plants of Al-Hawizeh Marsh, southern of Iraq. Biodiversitas 22: 338-345. In order to describe the degree of contamination of aquatic environments in Iraq, heavy metals analysis (Fe, Ni, Cr, Cd, Pb, and Zn) was conducted for six aquatic macrophytes from different locations of Al-Hawizeh Marsh in southern Iraq. The six species were Azolla filiculoides (floating plant), Ceratophyllum demersum, Potamogeton pectinatus, Najas marina (submerged plants), Phragmites australis, and Typha domingensis (emergent plants). The results indicate that cadmium, chromium, and iron concentrations in aquatic plants were above the World Health Organization (WHO). In contrast, zinc, copper, and lead were within the allowable limits. C. demersum and N. marina showed higher concentrations of heavy metal accumulation than the other aquatic plants. The concentration of heavy metals in plant tissues during the summer months was higher than in the different seasons. C. demersum and N. marina showed higher concentrations of heavy metal accumulation than the other aquatic plants. Heavy metal bioconcentration (BCF) was calculated to assess heavy metals bioaccumulation in the aquatic plants.
The aim of this work is to detect the best operating conditions that effect on the removal of Cu2+, Zn2+, and Ni2+ ions from aqueous solution using date pits in the batch adsorption experiments. The results have shown that the Al-zahdi Iraqi date pits demonstrated more efficient at certain values of operating conditions of adsorbent doses of 0.12 g/ml of aqueous solution, adsorption time 72 h, pH solution 5.5 ±0.2, shaking speed 300 rpm, and smallest adsorbent particle size needed for removal of metals. At the same time the particle size of date pits has a little effect on the adsorption at low initial concentration of heavy metals. The adsorption of metals increases with increas
... Show MoreThe present research was conducted to reduce the sulfur content of Iraqi heavy naphtha by adsorption using different metals oxides over Y-Zeolite. The Y-Zeolite was synthesized by a sol-gel technique. The average size of zeolite was 92.39 nm, surface area 558 m2/g, and pore volume 0.231 cm3/g. The metals of nickel, zinc, and copper were dispersed by an impregnation method to prepare Ni/HY, Zn/HY, Cu/HY, and Ni + Zn /HY catalysts for desulfurization. The adsorptive desulfurization was carried out in a batch mode at different operating conditions such as mixing time (10,15,30,60, and 600 min) and catalyst dosage (0.2,0.4,0.6,0.8,1, and 1.2 g). The most of the sulfur compounds were removed at 10 min for all catalyst ty
... Show MoreThe reservoir units of Mishrif Formation in Majnoon oil field were studied by using available wireline logs (gamma ray, porosity and resistivity) and facies that derived from core and cutting samples for three wells including Mj-1, Mj-15, and Mj-20. The reservoir properties were determined and interpreted by using IP software. The results showed that unit D have the best reservoir properties due to high effective porosity, low water saturation and very low volume of shale. Furthermore, a large part of this unit was deposited in shoal environment. The other reservoir units are then graded in reservoir properties including units B, A, F & E respectively, except unit C, which is considered as a cap unit, because it consists of rest
... Show MoreWater pollution is an issue that can be exacerbated by drought as increased concentrations of unwanted substances are a consequence of lower water levels. Polluted water that flows into natural marshlands leads to the deposition of pollutants in the interior of the marsh. Here we present evidence that the interior of the Central Marsh (CM) in southern Iraq suffers from higher levels of pollution than areas closer to the source of water entering the marsh (the Euphrates River). A 1.7m embankment that halts the flow of the Euphrates is only infrequently breached and so the CM is effectively the terminal destination of the waters (and their associated pollutants and agricultural waste) flowing from the West of Iraq.
A range of water
... Show MoreThe Middle Cenomanian-Early Turonian Mishrif Formation includes important carbonate reservoirs in Iraq and some other surrounding countries due to their high reservoir quality and wide geological extension. The 2D models of this study for facies, effective porosity and water saturation indicate the vertical and lateral heterogeneity of the Mishrif Formation reservoir properties in the Majnoon oil field. Construction of 2D reservoir model of the Mishrif Formation to explain the distribution of facies and petrophysical properties (effective porosity and water saturation) by using RockWorks software. The increase of effective porosity is attributed to the presence of shoal facies.The high water saturation is attributed to the existence of rest
... Show MoreVascular plants that have been identified during the study seasons in the Island. The cultivated plants were 126 species belong to 103 genera and to 49 families of the year 2001-2002 . The natural vegetation in this Island has been subjected to a total disturbance and subsidence due to the comprehensive turbidity of the Island environment.Number of names of that natural vegetation has been mentioned in the study within the weed plants.The results of the study of the period of flowering and their attitudes show clear seasonal differences. During the cold months of winter, the number of the cultivated and the natural plants was at the rate of 15%.These kinds of flowers require high level of care to increase their numbers. While in the spring
... Show MoreVarious heavy metals, cations and anions of the Tigris River water in Baghdad regionwere studied during the winter, spring, summer and autumn of 2009, for 4 samplingsites. In the present investigation the levels of studied heavy metals, cations and anionswere found in the range of (0.011-0.333 mg/L) for As, in the water samples(undetectable-0.0043 mg/L) for Sb,( 0.011-0.080 mg/L) for Ti, (0.150-0.730 mg/L) forV, (0.01-1.06 mg/L) for Fe, (0.1-0.4 mg/L) for Zn, (0.011-0.15 mg/L) for Pb, (0.01-0.05mg/L) for Cd, (0.01-0.04 mg/L) for Ni, (50-290 mg/L) for Ca, (97-270 mg/L) for Mg,(0.65-1.74 mg/L) for K, (11-38.33) for Na, (35-113 mg/L) for Cl, (150-256 mg/L) forHCO3, (96-479 mg/L) for SO4, (0.93-3.9 mg/L) for NO3 and (undetectable - 0.360 mg/L)f
... Show MoreThe study aims to study the geographical distribution of electricpower plants in Iraq, except the governorates of Kurdistan Region (Dohuk, Erbil, Sulaymaniyah) due to lack of data.
In order to reach the goal of the research was based on some mathematical equations and statistical methods to determine how the geographical distribution of these stations (gas, hydropower, steam, diesel) within the provinces and the concentration of them as well as the possibility of the classification of power plants in Iraq to facilitate understanding of distribution in a scientific manner is characterized by objectively.
The most important results of the research are that there are a number of factors that led to the irregular distribution
... Show MoreThe object of the presented study was to monitor the changes that had happened in the main features (water, vegetation, and soil) of Al-Hammar Marsh region. To fulfill this goal, different satellite images had been used in different times, MSS 1973, TM 1990, ETM+ 2000, 2002, and MODIS 2009, 2010. A new technique of the unsupervised classification called (Color Extracting Technique) was used to classify the satellite images. MATLAP programming used the technique and separated Al-Hammar Marsh from other water features (rivers, irrigated lands, etc.) when calculated the changes in the water content of the study region. ArcGIS 9.3 (arcMAP, arcToolbox) were used to achieve this work and calculate area of each class.
Environmental pollution is experiencing an alarming surge within the global ecosystem, warranting urgent attention. Among the significant challenges that demand immediate resolution, effective treatment of industrial pollutants stands out prominently, which for decades has been the focus of most researchers for sustainable industrial development aiming to remove those pollutants and recover some of them. The liquid membrane (LM) method, specifically electromembrane extraction (EME), offers promise. EME deploys an electric field, reducing extraction time and energy use while staying eco-friendly. However, there's a crucial knowledge gap. Despite strides in understanding and applying EME, optimizing it for diverse industrial pollutant
... Show More