Image recognition is one of the most important applications of information processing, in this paper; a comparison between 3-level techniques based image recognition has been achieved, using discrete wavelet (DWT) and stationary wavelet transforms (SWT), stationary-stationary-stationary (sss), stationary-stationary-wavelet (ssw), stationary-wavelet-stationary (sws), stationary-wavelet-wavelet (sww), wavelet-stationary- stationary (wss), wavelet-stationary-wavelet (wsw), wavelet-wavelet-stationary (wws) and wavelet-wavelet-wavelet (www). A comparison between these techniques has been implemented. according to the peak signal to noise ratio (PSNR), root mean square error (RMSE), compression ratio (CR) and the coding noise e (n) of each third level. The two techniques that have the best results which are (sww and www) are chosen, then image recognition is applied to these two techniques using Euclidean distance and Manhattan distance and a comparison between them has been implemented., it is concluded that, sww technique is better than www technique in image recognition because it has a higher match performance (100%) for Euclidean distance and Manhattan distance than that in www..
A new computer-generated optical element called a monochrome image hologram (MIH) is described. A real nonnegative function to represent the transmittance of a synthesized hologram is used. This technique uses the positions of the samples in the synthesized hologram to record the phase information of a complex wavefront. Synthesized hologram is displayed on laser printer and is recorded on a film. Finally the reconstruction process is done using computerized .
Medical image security is possible using digital watermarking techniques. Important information is included in a host medical image in order to provide integrity, consistency, and authentication in the healthcare information system. This paper introduces a proposed method for embedding invisible watermarking in the 3D medical image. The cover medical image used is DICOM which consists of a number of slices, each one representing a sense, firstly must separate the ROI (Region of Interest) and NROI (Not Region Of Interest) for each slice, the separation process performed by the particular person who selected by hand the ROI. The embedding process is based on a key generated from Arnold's chaotic map used as the position of a pixel in
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show More