In this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these measurements are sent using the internet of thing (IoT) technology to Google Firebase cloud, where the electric consumer's service center is located to store, analyze the measured data, and detect cases of energy penetration when it exceeds 53 and the cases of the electrical energy theft if any below 20 and then take the appropriate decision about it. Finally, an electric smart metering application (ESM-app) is designed and implemented to read and pull data information from the Google firebase cloud and then send the electric bill to the end consumer, and sending alert messages to the thieves and electrical power hackers to prohibit them if something wrong has detected. In this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these measurements are sent using the internet of thing (IoT) technology to Google Firebase cloud, where the electric consumer's service center is located to store, analyze the measured data, and detect cases of energy penetration when it exceeds 53 and the cases of the electrical energy theft if any below 20 and then take the appropriate decision about it. Finally, an electric smart metering application (ESM-app) is designed and implemented to read and pull data information from the Google firebase cloud and then send the electric bill to the end consumer, and sending alert messages to the thieves and electrical power hackers to prohibit them if something wrong has detected.
Smart water flooding (low salinity water flooding) was mainly invested in a sandstone reservoir. The main reasons for using low salinity water flooding are; to improve oil recovery and to give a support for the reservoir pressure.
In this study, two core plugs of sandstone were used with different permeability from south of Iraq to explain the effect of water injection with different ions concentration on the oil recovery. Water types that have been used are formation water, seawater, modified low salinity water, and deionized water.
The effects of water salinity, the flow rate of water injected, and the permeability of core plugs have been studied in order to summarize the best conditions of low salinity
... Show MoreThe physical behavior for the energy distribution function (EDF) of the reactant particles depending upon the gases (fuel) temperature are completely described by a physical model covering the global formulas controlling the EDF profile. Results about the energy distribution for the reactant system indicate a standard EDF, in which it’s arrive a steady state form shape and intern lead to fix the optimum selected temperature.
A Multiple System Biometric System Based on ECG Data
A new laboratory study conducted on stepped spillways in order to investigate their efficiency of dissipating flow energy. All previous study on stepped spillway indicated that the flow energy dissipation decreased as increasing in discharge. Increasing in the step numbers and the spillway slope led to energy dissipation decrease. In this study, an experimental attempt to increase energy dissipation at variable discharges was performed on stepped spillway and that leads to decreasing the cost of initiating the stilling basin or may be ignoring it. Five spillways were constructed from concrete and tested to investigate and compare among them. Three were roughed by gravel with different size for each one, one of them was s
... Show MoreAbstract
This work deals with a numerical investigation to evaluate the utilization of a water pipe buried inside a roof to reduce the heat gain and minimize the transmission of heat energy inside the conditioning space in summer season. The numerical results of this paper showed that the reduction in heat gain and energy saving could be occurred with specific values of parameters, like the number of pipes per square meter, the ratio of pipe diameter to the roof thickness, and the pipe inlet water temperature. Comparing with a normal roof (without pipes), the results indicated a significant reduction in energy heat gain which is about 37.8% when the number of pipes per m
... Show MoreThe modification of hydrophobic rock surfaces to the water-wet state via nanofluid treatment has shown promise in enhancing their geological storage capabilities and the efficiency of carbon dioxide (CO2) and hydrogen (H2) containment. Despite this, the specific influence of silica (SiO2) nanoparticles on the interactions between H2, brine, and rock within basaltic formations remains underexplored. The present study focuses on the effect of SiO2 nanoparticles on the wettability of Saudi Arabian basalt (SAB) under downhole conditions (323 K and pressures ranging from 1 to 20 MPa) by using the tilted plate technique to measure the contact angles between H2/brine and the rock surfaces. The findings reveal that the SAB's hydrophobicity intensif
... Show MoreThis study aimed to incorporate hydroxyapatite nanoparticles (nHA) or amorphous calcium phosphate nanoparticles (nACP) into a self-etch primer (SEP) to develop a simplified orthodontic bonding system with remineralizing and enamel preserving properties.
nHA and nACP were incorporated into a commercial SEP (Transbond™ plus) in 7% weight ratio and compared with the plain SEP as a control. Shear bond strengths (SBS), enamel damage, and adhesive remnant index (ARI) scores were evaluated at 24 h