In this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these measurements are sent using the internet of thing (IoT) technology to Google Firebase cloud, where the electric consumer's service center is located to store, analyze the measured data, and detect cases of energy penetration when it exceeds 53 and the cases of the electrical energy theft if any below 20 and then take the appropriate decision about it. Finally, an electric smart metering application (ESM-app) is designed and implemented to read and pull data information from the Google firebase cloud and then send the electric bill to the end consumer, and sending alert messages to the thieves and electrical power hackers to prohibit them if something wrong has detected. In this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these measurements are sent using the internet of thing (IoT) technology to Google Firebase cloud, where the electric consumer's service center is located to store, analyze the measured data, and detect cases of energy penetration when it exceeds 53 and the cases of the electrical energy theft if any below 20 and then take the appropriate decision about it. Finally, an electric smart metering application (ESM-app) is designed and implemented to read and pull data information from the Google firebase cloud and then send the electric bill to the end consumer, and sending alert messages to the thieves and electrical power hackers to prohibit them if something wrong has detected.
Maximum values of one particle radial electronic density distribution has been calculated by using Hartree-Fock (HF)wave function with data published by[A. Sarsa et al. Atomic Data and Nuclear Data Tables 88 (2004) 163–202] for K and L shells for some Be-like ions. The Results confirm that there is a linear behavior restricted the increasing of maximum points of one particle radial electronic density distribution for K and L shells throughout some Be-like ions. This linear behavior can be described by using the nth term formula of arithmetic sequence, that can be used to calculate the maximum radial electronic density distribution for any ion within Be like ions for Z<20.
An analytical and clinical study has been applied for measure the bioavailability of Zinc in serum of twenty adults healthy volunteers, using flame atomic absorption spectrophotometer (FAAS) at 213.9 nm. The calibration graph is linear in the ranges of 0.25-1.5 μg.mL-1 with correlation coefficient (R) 0.09996)μg.mL1-and molar absorpitivites 22957.76(L.mol1-cm-1.The concentration of Zinc determined in serum of all volunteers before and after administered orally a tablet of 50 mg zinc sulphate, produced by Samara drugs company (SDI). All data were subjected to statistical analysis by calculating accuracy, precision in addition to other parameters. The results indicate that the average maximum concentration (C-max ± SD) of blood zinc was 0.
... Show MoreA novel fractal design scheme has been introduced in this paper to generate microstrip bandpass filter designs with miniaturized sizes for wireless applications. The presented fractal scheme is based on Minkowski-like prefractal geometry. The space-filling property and self-similarity of this fractal geometry has found to produce reduced size symmetrical structures corresponding to the successive iteration levels. The resulting filter designs are with sizes suitable for use in modern wireless communication systems. The performance of each of the generated bandpass filter structures up to the 2nd iteration has been analyzed using a method of moments (MoM) based software IE3D, which is widely adopted in microwave research and in
... Show MoreWe study in this paper the composition operator that is induced by ?(z) = sz + t. We give a characterization of the adjoint of composiotion operators generated by self-maps of the unit ball of form ?(z) = sz + t for which |s|?1, |t|<1 and |s|+|t|?1. In fact we prove that the adjoint is a product of toeplitz operators and composition operator. Also, we have studied the compactness of C? and give some other partial results.
This paper is based on the Sentinel-2 satellite data: the thermal, red, and NIR bands. The Babylon city was chosen in this study for different reasons: its location in the middle of Iraq and it represents the largest capitals of the Mesopotamia civilization in the word. The Land Surface Temperature (LST) was determined using a method that incorporates remote sensing, geographic information systems, and statistics. This process has made it possible to monitor the relationship between land usage and the land surface temperature for four seasons in the year 2021. The mapswere processed and analyzed by using ArcGIS software. Five maps of the LST were constructed. Each map represents diffe
The skin temperature of the earth’s surface is referred to as the Land Surface Temperature (LST). the availability of long-term and high-quality temperature records is important for various uses that affect people’s lives and livelihoods. Much valid information was provided to this research from remote sensing technology by using Landsat 8 (L8) imagery to estimate LST for Al-Ahdab oil field in Wasit city in Iraq. The aim of this research is to analyze LST variations based on Landsat 8 data for 2022 (January, April, July, and October). ArcMap 10.8 was used to estimate LST results. The results values ranged from (about 10 C in January to about 46 C in July). The results show that LS