DeepFake is a concern for celebrities and everyone because it is simple to create. DeepFake images, especially high-quality ones, are difficult to detect using people, local descriptors, and current approaches. On the other hand, video manipulation detection is more accessible than an image, which many state-of-the-art systems offer. Moreover, the detection of video manipulation depends entirely on its detection through images. Many worked on DeepFake detection in images, but they had complex mathematical calculations in preprocessing steps, and many limitations, including that the face must be in front, the eyes have to be open, and the mouth should be open with the appearance of teeth, etc. Also, the accuracy of their counterfeit detection in all previous studies was less than what this paper achieved, especially with the benchmark Flickr faces high-quality dataset (FFHQ). This study proposed, a new, simple, but powerful method called image Re-representation by combining the local binary pattern of multiple-channel (IR-CLBP-MC) color space as an image re-representation technique improved DeepFake detection accuracy. The IRCLBP- MC is produced using the fundamental concept of the multiple-channel of the local binary pattern (MCLBP), an extension of the original LBP. The primary distinction is that in our method, the LBP decimal value is calculated in each local patch channel, merging them to re-represent the image and producing a new image with three color channels. A pretrained convolutional neural network (CNN) was utilized to extract the deep textural features from twelve sets of a dataset of IR-CLBP-MC images made from different color spaces: RGB, XYZ, HLS, HSV, YCbCr, and LAB. Other than that, the experimental results by applying the overlap and non-overlap techniques showed that the first technique was better with the IR-CLBP-MC, and the YCbCr image color space is the most accurate when used with the model and for both datasets. Extensive experimentation is done, and the high accuracy obtained are 99.4% in the FFHQ and 99.8% in the CelebFaces Attributes dataset (Celeb-A).
The subject of marketing culture and mental image is one of the important topics in the field of management. There is no study that combines these two variables. The research is important because of the increasing importance of the subject. The future direction of the company in question will support the company's economic and marketing responsibilities. And reflect the company's mental image, as a culture that contributes to changing the reality of the organization investigated by polling the views of a sample of managers in the General Company for Vegetable Oil Industry, which (30) out of the (65) individual, and There are two hypotheses of research: There is a significant
... Show MoreGlaucoma is a visual disorder, which is one of the significant driving reason for visual impairment. Glaucoma leads to frustrate the visual information transmission to the brain. Dissimilar to other eye illness such as myopia and cataracts. The impact of glaucoma can’t be cured; The Disc Damage Likelihood Scale (DDLS) can be used to assess the Glaucoma. The proposed methodology suggested simple method to extract Neuroretinal rim (NRM) region then dividing the region into four sectors after that calculate the width for each sector and select the minimum value to use it in DDLS factor. The feature was fed to the SVM classification algorithm, the DDLS successfully classified Glaucoma d
Diabetic retinopathy is an eye disease, because of pressure in eye nerve fiber. It is a major cause of blindness in middle as well as older age groups; therefore it is essential to diagnose it earlier. Some of the challenges are in the diagnosis of the disease is detection edges of the image, may be some important edges are missed outcome the noise around the corners.
Wherefore, in order to reduce these effects in this paper, we proposed a new technique for edge detection using traditional operators in combination with fuzzy logic based on fuzzy inference system. The results show that the proposed fuzzy edge detection technique better than of traditional techniques, where vascular are markedly detected over the original.
HM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023
This study was designed to highlight the role of Epstein Barr viruses (EBV) as a possible causative effect in multiple sclerosis (MS) through testing the viral load along with both biochemical and immunological parameters in female MS patients. We also aimed at finding the effects of different types of treatment line on the various study aspects. The results of the enzyme-linked immunosorbent assay (ELISA) revealed first an increased level of EBV EBNA1IgG IL-17A (96.13±27.60 pg/ml) in sera of female MS patients (0.05±0.01 U/ml, n=50) compared with the control group (n=40). We confirmed this result using real-time polymerase chain reaction (RT-PCR) which also showed a significantly higher EBV load in MS patients (22.61±12.72 copi
... Show MoreIn this paper, new integro-differential operators are introduced that defined by Salagean’s differential operator. The major object of the present study is to investigate convexity properties on new geometric subclasses included these new operators.
Advances in digital technology and the World Wide Web has led to the increase of digital documents that are used for various purposes such as publishing and digital library. This phenomenon raises awareness for the requirement of effective techniques that can help during the search and retrieval of text. One of the most needed tasks is clustering, which categorizes documents automatically into meaningful groups. Clustering is an important task in data mining and machine learning. The accuracy of clustering depends tightly on the selection of the text representation method. Traditional methods of text representation model documents as bags of words using term-frequency index document frequency (TFIDF). This method ignores the relationship an
... Show More<span>Distributed denial-of-service (DDoS) attack is bluster to network security that purpose at exhausted the networks with malicious traffic. Although several techniques have been designed for DDoS attack detection, intrusion detection system (IDS) It has a great role in protecting the network system and has the ability to collect and analyze data from various network sources to discover any unauthorized access. The goal of IDS is to detect malicious traffic and defend the system against any fraudulent activity or illegal traffic. Therefore, IDS monitors outgoing and incoming network traffic. This paper contains a based intrusion detection system for DDoS attack, and has the ability to detect the attack intelligently, dynami
... Show More