DeepFake is a concern for celebrities and everyone because it is simple to create. DeepFake images, especially high-quality ones, are difficult to detect using people, local descriptors, and current approaches. On the other hand, video manipulation detection is more accessible than an image, which many state-of-the-art systems offer. Moreover, the detection of video manipulation depends entirely on its detection through images. Many worked on DeepFake detection in images, but they had complex mathematical calculations in preprocessing steps, and many limitations, including that the face must be in front, the eyes have to be open, and the mouth should be open with the appearance of teeth, etc. Also, the accuracy of their counterfeit detection in all previous studies was less than what this paper achieved, especially with the benchmark Flickr faces high-quality dataset (FFHQ). This study proposed, a new, simple, but powerful method called image Re-representation by combining the local binary pattern of multiple-channel (IR-CLBP-MC) color space as an image re-representation technique improved DeepFake detection accuracy. The IRCLBP- MC is produced using the fundamental concept of the multiple-channel of the local binary pattern (MCLBP), an extension of the original LBP. The primary distinction is that in our method, the LBP decimal value is calculated in each local patch channel, merging them to re-represent the image and producing a new image with three color channels. A pretrained convolutional neural network (CNN) was utilized to extract the deep textural features from twelve sets of a dataset of IR-CLBP-MC images made from different color spaces: RGB, XYZ, HLS, HSV, YCbCr, and LAB. Other than that, the experimental results by applying the overlap and non-overlap techniques showed that the first technique was better with the IR-CLBP-MC, and the YCbCr image color space is the most accurate when used with the model and for both datasets. Extensive experimentation is done, and the high accuracy obtained are 99.4% in the FFHQ and 99.8% in the CelebFaces Attributes dataset (Celeb-A).
The logistic regression model regarded as the important regression Models ,where of the most interesting subjects in recent studies due to taking character more advanced in the process of statistical analysis .
The ordinary estimating methods is failed in dealing with data that consist of the presence of outlier values and hence on the absence of such that have undesirable effect on the result. &nbs
... Show MoreIn globalization, the world became open area to competition for the attractive of investment, and the abilities of each country to win the confidence of investors depend upon the preparation to optimize circumstances. The competitiveness is an essential means of expanding the capacity of developed to coexist in an international environment characterized by globalization. While competition describes the market structure, the behavior of investors and business, competitiveness is interested in the evaluation of business performance or countries and compare them in the conditions of competition available in these markets. Regarding Malaysia, which is depend on FDI-Export- Led Growth strategy, it has taking on diffe
... Show MoreMost countries in the world particularly developing countries, including Iraq, facing extremely dangerous problem with social and political dimensions, which is the emergence of the food crisis problem ,the decrease in domestic food production in Iraq isn't meet the needs of its population food, due to the fact that the agricultural sector suffers from multiple natural ,economic and human problems .It is still below the level required to meet the needs of the population of food ,since food at the forefront of priorities needed by the human . This represents indispensable basic necessity , so the responsibility of its availability permanently in appropriate&nb
... Show MoreGroupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is eff
... Show MoreBackground: e cerebellum is divided into two hemispheres and contains a narrow midline zone called thevermis. A set of large folds are conventionally used to divide the overall structure into ten smaller "lobules". evermis receives fibres from the trunk and proximal portions of limbs, But the question is that does the cerebellum have the same measurementvalues in males and females of the same age?Material and method: e present study used 80 sectional brain MRI images (40: males, 40: females); 35-50 years old as indices of size for thevermian structures of the Cerebellum. is middle age group was taken because as known generally it could be neither an age of growth as inthe young nor of atrophy as in old individuals. e aim rega
... Show MoreThe last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of
... Show MoreThe successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show MoreThis study included the isolation and identification of Aspergillus flavus isolates associated with imported American rice grains and local corn grains which collected from local markets, using UV light with 365 nm wave length and different media (PDA, YEA, COA, and CDA ). One hundred and seven fungal isolates were identified in rice and 147 isolates in corn.4 genera and 7 species were associated with grains, the genera were Aspergillus ,Fusarium ,Neurospora ,Penicillium . Aspergillus was dominant with occurrence of 0.47% and frequency of 11.75% in rice grains whereas in corn grains the genus Neurospora was dominant with occurrence of 1.09% and frequency 27.25% ,results revealed that 20 isolates out of 50 A. flavus isolates were able
... Show MoreOrthogonal polynomials and their moments serve as pivotal elements across various fields. Discrete Krawtchouk polynomials (DKraPs) are considered a versatile family of orthogonal polynomials and are widely used in different fields such as probability theory, signal processing, digital communications, and image processing. Various recurrence algorithms have been proposed so far to address the challenge of numerical instability for large values of orders and signal sizes. The computation of DKraP coefficients was typically computed using sequential algorithms, which are computationally extensive for large order values and polynomial sizes. To this end, this paper introduces a computationally efficient solution that utilizes the parall
... Show More