The nuclear shell model was used to investigate the bulk properties of lithium isotopes (6,7,8,9,11Li), i.e., the ground state density distributions and C0 and C2 components of charge form factors. The theoretical treatment was based on supposing that the Harmonic-oscillator (HO) potential governs the core nucleons while the valence nucleon(s) move through Hulthen potential. Such assumptions were applied for both stable and exotic lithium isotopes. The HO size parameters ( and ), the core radii ( ) and the attenuation parameters ( and ) were fixed to recreate the available empirical size radii for lithium isotopes under study.
Electron Transfer reaction rate constants at Semiconductor / Liquid interfaces are calculated dy using the Fermi Golden Rule for Semiconductor. The reorganization energy   eVï„ is computed for Semiconductor / Liquid Interfaces system in two solvents and compared with experimental value. The driving force (free energy) ΔGo(eV) is calculated depending on spectrum Ru(H2L`)2 (NCS)2 . The transfer is treated according with weak coupling (nonadiabatic) for two – state level between the Semiconductor and acceptor molecule state.
Theoretically description of the electron transfer of the electron transfer of met/mol has been investigated in this work according to the quantum theory. By using a model that is derived depending on the first order perturbation theory, the rate constant at met/mol interface can be calculated with the calculated reorganization energy. The reorganization energy that is evaluated according to the outer sphere model is based on the electstatistics potential of the molecular donor and acceptor. The molecular parameters introduced in this model are the molecular weight, mass, density, and radius of molecule have been evaluated according to the apparent molar volume using spherical approach. Th
... Show MoreIn this paper we present the first ever measured experimental electron momentum density of Cu2Sb at an intermediate resolution (0.6 a.u.) using 59.54 keV 241Am Compton spectrometer. The measurements are compared with the theoretical Compton profiles using density function theory (DFT) within a linear combination of an atomic orbitals (LCAO) method. In DFT calculation, Perdew-Burke-Ernzerhof (PBE) scheme is employed to treat correlation whereas exchange is included by following the Becke scheme. It is seen that various approximations within LCAO-DFT show relatively better agreement with the experimental Compton data. Ionic model calculations for a number of configurations (Cu+x/2)2(Sb-x) (0.0≤x≤2.0) are also performed utilizing free a
... Show MoreIn this study the most stable isobar for some isobaric families (light and intermediate ) nuclei with mass number (A) equals to (15-30) & (101- 115) have been determined. This determination of stable nuclide can help to determine the suitable nuclide, which can be used in different fields.
Most stable isobar can be determined by two means. First: plot mass parabolas (plotting the binding energy (B.E) as a function of the atomic number (Z)) for these isobaric families, in this method most stable isobars represent the lowest point in mass parabola (the nuclide with the highest value of binding energy).
Second: calculated the atomic number for most stable isobar (ZA) value.
Our results show that
... Show MoreLet R be a commutative ring with non-zero identity element. For two fixed positive integers m and n. A right R-module M is called fully (m,n) -stable relative to ideal A of , if for each n-generated submodule of Mm and R-homomorphism . In this paper we give some characterization theorems and properties of fully (m,n) -stable modules relative to an ideal A of . which generalize the results of fully stable modules relative to an ideal A of R.
Stable isotope composition of δ2H and δ18O was investigated in the water resources of the Shwan sub-Basin northeast of Iraq. The study objects conceived the possible factors that affect the stable isotopes’ composition in precipitation additionally to achieve information concerning recharge processes and estimate the groundwater recharge sources. In this study, four precipitation samples were collected at the study area for the 2020–2021 hydrological year. Thirty-two groundwater samples and one surface water sample from Lesser Zab River (LZR) were collected during the same period for two sampling seasons. The results of observed meteorological data show a very small amount of pr
Tanuma and Zubair formations are known as the most problematic intervals in Zubair Oilfield, and they cause wellbore instability due to possible shale-fluid interaction. It causes a vast loss of time dealing with various downhole problems (e.g., stuck pipe) which leads to an increase in overall well cost for the consequences (e.g., fishing and sidetrack). This paper aims to test shale samples with various laboratory tests for shale evaluation and drilling muds development. Shale's physical properties are described by using a stereomicroscope and the structures are observed with Scanning Electron Microscope. The shale reactivity and behavior are analyzed by using the cation exchange capacity testing and the capillary suction test is
... Show MoreThe ground state charge, neutron, proton and matter densities, the associated nuclear radii and the binding energy per nucleon of 8B, 17Ne, 23Al and 27P halo nuclei have been investigated using the Skyrme–Hartree–Fock (SHF) model with the new SKxs25 parameters. According to the calculated results, it is found that the SHF model with these Skyrme parameters provides a good description on the nuclear structure of above proton-rich halo nuclei. The elastic charge form factors of 8B and 17Ne halo nuclei and those of their stable isotopes 10B and 20Ne are calculated using plane-wave Born approximation with the charge density distributions obtained by SHF model to investigate the effect of the extended charge distributions of proton-rich nucl
... Show More