The nuclear shell model was used to investigate the bulk properties of lithium isotopes (6,7,8,9,11Li), i.e., the ground state density distributions and C0 and C2 components of charge form factors. The theoretical treatment was based on supposing that the Harmonic-oscillator (HO) potential governs the core nucleons while the valence nucleon(s) move through Hulthen potential. Such assumptions were applied for both stable and exotic lithium isotopes. The HO size parameters ( and ), the core radii ( ) and the attenuation parameters ( and ) were fixed to recreate the available empirical size radii for lithium isotopes under study.
The charge density distributions (CDD) and the elastic electron
scattering form factors F(q) of the ground state for some even mass
nuclei in the 2s 1d shell ( Ne Mg Si 20 24 28 , , and S 32 ) nuclei have
been calculated based on the use of occupation numbers of the states
and the single particle wave functions of the harmonic oscillator
potential with size parameters chosen to reproduce the observed root
mean square charge radii for all considered nuclei. It is found that
introducing additional parameters, namely 1 , and , 2 which
reflect the difference of the occupation numbers of the states from
the prediction of the simple shell model leads to a remarkable
agreement between the calculated an
توزيعات كثافة البروتون (PDD)، خلافاتهم وتناثر الإلكترون مرنة عوامل الشكل، F (ف) من ارض الدولة لبعض نوى قذيفة، مثل ( 104 المشتريات، 106
... Show MoreThe nucleon momentum distributions (NMD) and elastic electron scattering form factors of the ground state for some 1f-2p-shell nuclei, such as 58Ni, 60Ni, 62Ni, and 64Ni
isotopes have been calculated in the framework of the coherent fluctuation model (CFM) and expressed in terms of the weight function lf(x)l2 . The weight function (fluctuation function) has been related to the nucleon density distribution (NDD) of the nuclei and determined from the theory and experiment. The NDD is derived from a simple method based on the use of the single particle wave functions of the harmonic oscillator potential and the occupation numbers of the states. The feature of the l
The nuclear density distributions and size radii are calculated for one-proton 8B, two-proton 17Ne, one-neutron 11Be and two-neutron 11Li halo nuclei. The theoretical outlines of calculations assume that the nuclei understudy are composed of two parts: the stable core and the unstable halo. The core part is studied using the radial wave functions of harmonic-oscillator (HO) potentials, while the halo is studied through Woods-Saxon (WS) potential. The long tail behaviour which is the main characteristic of the halo nuclei are well generated in comparison with experimental data. The calculated size radii are in good agreement with experimental values. The elastic electron scattering form factors of the C0 component are also c
... Show MoreThe calculation. of the nuclear. charge. density. distributions. ρ(r) and root. mean. square. radius.( RMS ) by elastic. electron. scattering. of medium. mass. nuclei. such. as (90Zr, 92Mo) based. on the model. of the modified. shell. and the use of the probability. of occupation. on the surface. orbits. of level 2p, 2s eroding. shells. and 1g gaining. shells. The occupation probabilities of these states differ noticeably from the predictions of the SSM. We have found. an improvement. in the determination. of ground. charge. density. and this improvement. allow. more precise. identification. of (CDD) between. (92Mo- 90Zr) to illustrate the influence of the extra
... Show MoreQuadrupole Q moments and effective charges are calculated for 9C, 11C, 17C and 19C exotic nuclei using shell model calculations. Excitations out of major shell space are taken into account through a microscopic theory which are called core-polarization effects. The simple harmonic oscillator potential is used to generate the single particle matrix elements of 9,11,17,19C. The present calculations with core-polarization effects reproduced the experimental and theoretical data very well.
Inelastic longitudinal electron scattering form factors for second
excited state C42 in 42Ti nucleus have been calculated using shell
model theory. Fp shell model space with configuration (1f7/2 2p3/2
1f5/2 2p1/2) has been adopted in order to distribute the valence
particles (protons and neutrons) outside an inert core 40Ca. Modern
model space effective interactions like FPD6 and GXPF1 have been
used to generate model space vectors and harmonic oscillator wave
function as a single particle wave function. Discarder space (core
orbits + higher orbits) has been included in (core polarization effect)
as a first order correction in microscopic theory to measure the
interested multipole form factors via the model
The aim of this work is to study the correlation between the electrons for Li atom in ground state through the calculation of the inter-particle distribution function f (r12) and inter-particle expectation values . By using the f(r12) function for KL shell in both singlet and triplet state .The Fermi hole have been evaluated .In this work the Hartree-Fock wave function (1993) have been used.
The electron correlation for inter-shells (1s 2p), (1s 3p) and (1s 3d) was described by the inter-particle radial distribution function f(r12). It was evaluated for Li-atom in the different excited states (1s2 2p), (1s2 3p) and (1s2 3d) using Hartree-Fock approximation (HF). The inter particle expectation values for these shells were also evaluated. The calculations were performed using Mathcad 14 program.