This study introduces a highly sensitive trapezium-shaped PCF based on an SPR refractometric sensor with unique design features. The structure of a sensor was designed and analyzed using COMSOL Multiphysics v5.6 based on Finite Element Method (FEM) with a focus on investigating the influence of various geometric parameters on its performance. The two channels were coated with a metallic gold layer to provide chemical stability, and a thin layer of TiO₂ improved the gold's adhesion to the fiber. The findings indicate that the proposed sensor achieves maximum amplitude and wavelength sensitivities of 1,779 RIU⁻¹ and 30,500 nm/RIU, respectively, with corresponding resolutions of 3.28×10⁻⁶ RIU for analyte RI sensing ranging from 1.30 to 1.42, operating in the visible to near-infrared region with a wavelength range (500 nm-1400 nm). The highly sensitive sensor provides wide potential for RI detection in chemical and biological sensing.
The synthesis of new substituted cobalt Phthalocyanine (CoPc) was carried out using starting materials Naphthalene-1,4,5, tetracarbonic acid dianhydride (NDI) employing dry process method. Metal oxides (MO) alloy of (60%Ni3O4 40%-Co3O4 ) have been functionalized with multiwall carbon nanotubes (F-MWCNTs) to produce (F-MWCNTs/MO) nanocomposite (E2) and mixed with CoPc to yield (F-MWCNT/CoPc/MO) (E3). These composites were investigated using different analytical and spectrophotometric methods such as 1H-NMR (0-18 ppm), FTIR spectroscopy in the range of (400-4000cm-1), powder X-rays diffraction (PXRD, 2θ o = 10-80), Raman spectroscopy (0-4000 cm-1), and UV-Visib
... Show MoreEnergy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreIn this research, a low cost, portable, disposable, environment friendly and an easy to use lab-on-paper platform sensor was made. The sensor was constructed using a mixture of Rhodamine-6G and gold nanoparticles also Sodium chloride salt. Drop–casting method was utilized as a technique to make a platform which is a commercial office paper. A substrate was characterized using Field Emission Scanning Electron Microscope, Fourier transform infrared spectroscopy, UV-visible spectrophotometer and Raman Spectrometer. Rh-6G Raman signal was enhanced based on Surface Enhanced Raman Spectroscopy technique utilized gold nanoparticles. High Enhancement factor of Plasmonic commercial office paper reaches up to 0.9 x105 because of local surface pl
... Show MoreNatural convection in a trapezoidal enclosure with partial heating from below and symmetrical cooling from the sides has been investigated numerically. The heating is simulated by a centrally located heat source on the bottom wall, and four different values of the dimensionless heat source length, 1/5, 2/5, 3/5, 4/5 are considered. The laminar flow field is analyzed numerically by solving the steady, two-dimensional incompressible Navier-Stokes and energy equations. The Cartesian velocity components and pressure on a collocated (non-staggered) grid are used as dependent variables in the momentum equations discretized by finite volume method; body fitted coordinates are used to represent the trapezoidal enclosure, and grid generatio
... Show MoreIn this research, Mn-doped TiO2 thin films were grown on glass, Si and OIT/glass substrates by R.F magnetron sputtering technique with thicknesses (250 nm) using TiO2:Mn target under Ar gas pressure and power of 100 Watt. Through the results of X-ray diffraction, the prepared thin films are of the polycrystallization type after the process of annealing at 600°C for two hour The average crystalline size were 145.32, 280.97 and 261.23 nm for (TiO2:Mn) thin film on glass, Si and OIT/glass substrates respectively, while the measured surface roughness is between 0.981nm and 1.14 nm. The fabricated (TiO2:Mn) thin film on glass sensors have high sensitivity for hydrogen( H2 reducing gas) compared to the sensitivity for hydrogen gas on Si and OIT/
... Show MoreIn this research was conducted to provide a product to analyze the performance sensor fiber optic used to measure and feel the intensity of the electric field results showed obtained that use sensor long gives reactive high electric field strength and a high value for allergic sensor, but that is at the expense of reducing the intensity of the electric field that is detected
Laser is a powerful device that has a wide range of applications in fields ranging from materials science and manufacturing to medicine and fibre optic communications. One remarkable