Biscuits are a global snack due to their convenience, variety, and durability. Biscuits with nutritious ingredients are in demand as customers become more health conscious. This change led to interest about utilizing agricultural by-products to enhance the nutritional value of widely consumed foods. Mango (Mangifera indica L.), a frequently cultivated tropical fruit, produces vital by-products during its processing, mainly comprising peels and kernels. The by-products, comprising around 35–60% of the mango fruit's weight, are high in bioactive compounds including dietary fiber, polyphenols, carotenoids, and essential fatty acids. Mango peels and kernels, even with their nutritional potential, frequently neglected, resulting in rising environmental waste. This study examines how mango peels and kernels can boost biscuits' nutritional fiber and antioxidant content. Researchers synthesize mango by-product nutritional and functional benefits and extraction and processing technologies. The study also examines mango by-products' sensory and economic effects on biscuits. High fiber and antioxidant content in mango peel powder improve digestion and reduce oxidative stress. With its beneficial fats and polyphenols, mango kernel powder adds nutrition. Health-conscious consumers may choose biscuits with 5–15% mango by-products since they retain or increase flavor, texture, and color. By-products from mangoes reduce food waste and promote a circular economy. Commercial application requires optimizing processing procedures, product quality consistency, and clinical trials to validate health claims. According to this analysis, mango by-products can enable creative and sustainable food production and meet customer demand for health-focused goods.
In this research, the structural behavior of reinforced concrete columns made of normal and hybrid reactive powder concrete (hybrid by steel and polypropylene fibers) subjected to chloride salts with concentration was 8341.6 mg/l. The study consists of two parts, the first one is experimental study and the second one is theoretical analysis. Three main variables were adopted in the experimental program; concrete type, curing type and loading arrangement. Twenty (120x120x1200) mm columns were cast and tested depending on these variables. The samples were reinforced using two different bars; Ø8 for ties and Ø12 with minimum longitudinal reinforcement (0.01Ag). The specimens were divided into two main groups based o
... Show MoreThis study conducted an analytical investigation on the behavior of concrete beams with openings reinforced by glass-fiber-reinforced polymer (GFRP) bars. In this study, five proposed beams reinforced by GFRP bars as flexural and shear reinforcement with openings were numerically examined. The variables were the opening orientation (vertical and horizontal) and the number of openings. These openings were located within the flexural zone of the proposed beams. The result shows that the vertical openings had a significant effect over the horizontal openings on reducing the ultimate load and increasing the mid-span deflection compared with the control beam. Moreover, the results showed t
In this study the thermal conductivity of the epoxy composites were characterized as function of volume fraction, particle size of fillers and the time of immersion(30,60,90)days in water .Composites plates were prepared by incorporating (bi-directional) (0º-90º) glass fiber and silicon carbide (SiC) particles of (0.1,0.5,1)mm as particle size at (10%,20%,30%,40%) percent volume in epoxy matrix.
The composites shows slightly increase of the thermal conductivity with increasing volume fraction, particle size and increase with increasing the days of immersion in water. The maximum thermal conductivity (0.51W/m.K) was obtained before the immersion in water at 90 days for epoxy reinforcement by bi-directional glass fiber and SiC particl
This study conducted an analytical investigation on the behavior of concrete beams with openings reinforced by glass-fiber-reinforced polymer (GFRP) bars. In this study, five proposed beams reinforced by GFRP bars as flexural and shear reinforcement with openings were numerically examined. The variables were the opening orientation (vertical and horizontal) and the number of openings. These openings were located within the flexural zone of the proposed beams. The result shows that the vertical openings had a significant effect over the horizontal openings on reducing the ultimate load and increasing the mid-span deflection compared with the control beam. Moreover, the results showed t
The removal of heavy metal ions from wastewater by ion exchange resins ( zeolite and purolite C105), was investigated. The adsorption process, which is pH dependent, shows maximum removal of metal ions at pH 6 and 7 for zeolite and purolite C105 for initial metal ion
concentrations of 50-250 mg/l, with resin dose of 0.25-3 g. The maximum ion exchange capacity was found to be 9.74, 9.23 and 9.71 mg/g for Cu2+, Pb2+, and Ni2+ on zeolite respectively, while on purolite C105 the maximum ion exchange capacity was found to be 9.64 ,8.73 and 9.39 for Cu2+, Pb2+, and Ni2+ respectively. The maximum removal was 97-98% for Cu2+ and Ni2+ and 92- 93% for Pb2+ on zeolite, while it was 93-94% for Cu2+, 96-97% for Ni2+, and 87-88% for Pb2+ on puroli
A series of new 4-(((4-(5-(Aryl)-1,3,4-oxadiazol-2-yl)benzyl)oxy)methyl)-2,6-dimethoxy phenol (6a-i) were synthesized from cyclization of 4-(((4-hydroxy-3,5-dimethoxy benzyl)oxy)methyl)benzohydrazide with substituted carboxylic acid in the presences of phosphorusoxy chloride.The resulting compounds were characterized by IR, 1H-NMR, 13C-NMR, and HRMS data. 2,2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) assays were used to screen their antioxidant properties. Compounds 6i and 6h exhibited significant antioxidant ability in both assay. Furthermore, type of substituent and their position of the aryl attached 1,3,4-oxadiazole ring at position five are play an important roles in enhancing or declining the antio
... Show MoreAbstract In the current contribution, a novel binuclear nickel(II) and zinc(II) complexes were prepared from a hexadentate ligand prepared via condensation of 3,3'-Bipyridine-6,6'-dicarbaldehyde , 2-amino-5-chlorobenzaldehyde and 2-Aminophenol .The symmetric ligand (H2DTPE) and its metal complexes were illustrated utilizing various techniques of physicochemical containing magnetic moment, analytical analysis and spectroscopy of mass, IR, 13C and 1H NMR, TGA and UV-Vis. The particles of MO Nanoscale were created from the labeled complex applying the ways of pyrolysis and utilizing methods of XRD, FT-IR, and FE-SEM, that specified close compatibility with the typical pattern for nanoparticles of NiO, ZnO and appeared the reasonable size in
... Show MoreThis study was carrid out to produce animal gelatin from chicken skin. Gelatin was prepared by the chemical method using HCl 2% and extraction at the temperature degree 70, 80, 90 c° and at the period of time 4, 6, 8 hours, calculated the yield, functional and sensory characteristics were measured at. The result also demonstrated that the produced gelatin have good functional properties in solubility, viscosity, gelling capacity, water absorpation, lipid binding, emulsification. viscosity was higher in gelatin prepared at 70 c° and period of extraction 8 hours and reached 1.0846 cp. Gelatin prepared were featured by highe gelling capacity at 1% for all extraction time periods. The produced gelatin was characterized by good sensory qual
... Show More