The dual nature of asphalt binder necessitates improvements to mitigate rutting and fatigue since it performs as an elastic material under the regime of rapid loading or cold temperatures and as a viscous fluid at elevated temperatures. The present investigation assesses the effectiveness of Nano Alumina (NA), Nano Silica (NS), and Nano Titanium Dioxide (NT) at weight percentages of 0, 2, 4, 6, and 8% in asphalt cement to enhance both asphalt binder and mixture performance. Binder evaluations include tests for consistency, thermal susceptibility, aging, and workability, while mixture assessments focus on Marshall properties, moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics. NS notably improves binder viscosity by about 138% and reduces penetration by approximately 40.8% at 8% nanomaterial (NM) content, significantly boosting hardness and consistency. NS also enhances Marshall stability and decreases air voids, increasing the mix’s durability. For moisture resistance, NS at 8% NM content elevates the Tensile Strength Ratio (TSR) to 91.0%, substantially surpassing the 80% standard. Similarly, NA and NT also show improved TSR values at 8% NM content, with 88.0% and 84.1%, respectively. Additionally, NS, NA, and NT reduce permanent deformation by 82%, 69%, and 64% at 10,000 cycles at 8% NM content, illustrating their effectiveness in mitigating pavement distress. Notably, while higher NM content generally results in better performance across most tests, the optimal NM content for fatigue resistance is 4% for NS and 6% for both NA and NT, reflecting their peak performance against various types of pavement distresses. These results highlight the significant advantages of nanoparticles in improving asphalt’s mechanical properties, workability, stability, and durability. The study recommends further field validation to confirm these laboratory findings and ensure that enhancements translate into tangible improvements in real-world pavement performance and longevity.
Ischemic heart disease is a major causes of heart failure. Heart failure patients have predominantly left ventricular dysfunction (systolic or diastolic dysfunction, or both). Acute heart failure is most commonly caused by reduced myocardial contractility, and increased LV stiffness. We performed echocardiography and gated SPECT with Tc99m MIBI within 263 patients and 166 normal individuals. Left ventricular end systolic volume (LVESV), left ventricular end diastolic volume (LVEDV), and left ventricular ejection fraction (LVEF) were measured. For all degrees of ischemia, there was a significant difference between ejection fraction values measured by SPECT and echo
In the present work, the ternary compound MgxZn7-x O7Wurtzoid with variable Zn and Mg contents was analyzed using density functional theory with B3LYP 6-311G**basis set. The electronic and vibrational properties of MgxZn7-xO7 wurtzoids, were investigated, including energy gaps, bond lengths, spectral properties, such like infrared spectra and Raman. IR and Raman spectra were compared with experimental longitudinal optical modes frequency results. The theoretical results agree well with experiments and previous data. It has been found that the energy gap is increasing with the increased Mg concentration, and that the longitudinal optical position exposes a UV shift movement with an increase in the concentration.
In the present work, the focusing was on the study of the x-ray diffraction, dielectric constant, loses dielectric coefficient, tangent angle, alter- natively conductivity and morphology of PET/BaTio3. The PET/BaTio3 composite was prepared for polyethylene terephthalate PET polymer composite containing 0, 10, 20, 30, 40, 50, and 60 wt. % from Barium titanate BaTi03 powder. The composite of two materials leads to form mixing solution and hot-pressing method. The effect of BaTio3 on the structure and dielectric properties with morphology was studied on PET matrix polymer using XRD, LCR meter and SEM.
The effect of heat treatment on the optical properties of the bulk heterojunction blend nickel (II) phthalocyanine tetrasulfonic acid tetrasodium salt and Tris (8-hydroxyquinolinato) Aluminum (NiPcTs/Alq3) thin films which prepared by spin coating was described in this study. The films coated on a glass substrate with speed of 1500 rpm for 1.5 min and treated with different annealing temperature (373, 423 and 473) K. The samples characterized using UV-Vis, X ray diffraction and Fourier transform Infrared (FTIR) spectra, XRD patterns indicated the presence of amorphous and polycrystalline blend (NiPcTs/Alq3). The results of UV visible shows that the band gap increase with increasing the annealing temperature up to 373 K and decreases with
... Show MoreThis work studies the role of serum apelin-36 and Glutathione S-transferases (GST) activity in association with the hormonal, metabolic profiles and their link to the risk of cardiovascular disease (CVD) in healthy and patients' ladies with polycystic ovary syndrome (PCOS). A total of fifty-four (PCOS) patients and thirty-one healthy woman as a control have been studied. The PCOS patients were subdivided on the basis of body-mass-index (BMI), into 2-subgroups (the first group was obese-PCOS with BMI ≥ 30 and the second group was non-obese PCOS MBI<30). Fasting-insulin-levels and Lipid-profile, Homeostatic-model assessment-of-insulin-resistance (HOMA-IR), follicle-stimulating-hormone (FSH), luteinizing-hormone (LH), testosterone and
... Show MoreDAIRMD Professor Hayder R. Al-Hamamy, **Professor Adil A. Noaimi, **Dr. Ihsan A. Al-Turfy, IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), 2015
HR Al-Hamamy, AA Noaimi, IA Al-Turfy, AI Rajab, Journal of Cosmetics, Dermatological Sciences and Applications, 2015