Most of drinking water consuming all over the world has been treated at the water treatment plant (WTP) where raw water is abstracted from reservoirs and rivers. The turbidity removal efficiency is very important to supply safe drinking water. This study is focusing on the use of multiple linear regression (MLR) and artificial neural network (ANN) models to predict the turbidity removal efficiency of Al-Wahda WTP in Baghdad city. The measured physico-chemical parameters were used to determine their effect on turbidity removal efficiency in various processes. The suitable formulation of the ANN model is examined throughout many preparations, trials, and steps of evaluation. The prediction models of the turbidity removal are presented. Results found that the estimating of the turbidity removal efficiency by ANN and MLR model could be successful. Moreover, results showed that influent and effluent turbidity concentration have more effect on removal efficiency predicting from the other parameters. Finally, the ANN model could be more accurate than the MLR model according to the coefficient of correlation (0.925).
The present study aimed to use the magnetic field and nanotechnology in the field of water purification, which slots offering high efficiency to the possibility of removing biological contaminants such as viruses and bacteria rather than the use of chemical and physical transactions such as chlorine and bromine, and ultraviolet light and boiling and sedimentation and distillation, ozone and others that have a direct negative impact on human safety and the environment. Where they were investigating the presence in water samples under study Coli phages using Single agar layer method and then treated samples positive for phages to three types of magnetic field fixed as follows (North Pole - South Pole - Bipolar) and compare the re
... Show MorePlant extracts occupied a big place in diseases treatment and preserving human health because, they contain many active substances that can be exploited in the field of pharmaceutical manufacturing from natural materials. Therefore, this study was conducted to evaluate the effect of different concentrations of plant extracts for each of Nigella sativa, Alliumsativum and Allium cepa against the fungal growth of Candida albicans that cause many skin diseases and infections to humans as well as Trichophyton mentagrophytes, which affects the hair, skin and nails. These two fungi have been isolated and diagnosed from people who have skin infection. Both fungal isolates were treated with extracts of Nigella sativa, Alliumsativum and Allium cepa
... Show MoreConsiderable amounts of domestic and industrial wastewater that should be treated before reuse are discharged into the environment annually. Electrocoagulation is an electrochemical technology in which electrical current is conducted through electrodes, it is mainly used to remove several types of wastewater pollutants, such as dyes, toxic materials, oil content, chemical oxygen demand, and salinity, individually or in combination with other processes. Electrocoagulation technology used in hybrid systems along with other technologies for wastewater treatment are reviewed in this work, and the articles reviewed herein were published from 2018 to 2021. Electrocoagulation is widely employed in integrated systems with other electrochemical tech
... Show MoreThe present study addresses the behavior of gases in cultivation media as an essential factor to develop the relationship between the microorganisms that are present in the same environment. This relationship was explained via mass transfer of those gases to be a reasonable driving force in changing biological trends. Stripping and dissolution of oxygen and carbon dioxide in water and dairy wastewater were investigated in this study. Bubble column bioreactor under thermal control system was constructed and used for these processes. The experimental results showed that the removal of gases from the culture media requires more time than the dissolution. For example, the volumetric mass transfer coefficient for the removal
... Show MoreA phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu
... Show MoreA phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu
... Show MoreNitrogen (N) and phosphorus (P) are the most important nutrients for crop production. The N contributes to the structural component, generic, and metabolic compounds in a plant cell. N is mainly an essential part of chlorophyll, the compound in the plants that is responsible for photosynthesis process. The plant can get its available nitrogen from the soil by mineralizing organic materials, fixed-N by bacteria, and nitrogen can be released from plant as residue decay. Soil minerals do not release an enough amount of nitrogen to support plant; therefore, fertilizing is necessary for high production. Phosphorous contributes in the complex of the nucleic acid structure of plants. The nucleic acid is essential in protein synthesis regulation; t
... Show More