Physics and applied mathematics form the basis for understanding natural phenomena using differential equations depicting the flow in porous media, the motion of viscous liquids, and the propagation of waves. These equations provide a thorough study of physical processes, enhancing the understanding of complex applications in engineering, technology, and medicine. This paper presents novel approximate solutions for the Darcy-Brinkmann-Forchheimer moment equation, the Blasius equation and the FalknerSkan equation with initial / boundary conditions by using two iterative methods: the variational iteration method and the optimal variational iteration method. The variational iteration method is effectively developed by adding a control parameter to enhance the convergence speed and prevent large-scale divergence. The influence of physical parameters on the accuracy of the solution was also analyzed, since it was noted that increasing some parameters improves accuracy, while increasing others leads to a decrease the accuracy. Also, the convergence of the proposed methods has been discussed and proved. Moreover, comparison was made with some approximate methods available in the literature were used the operational matrices methods include: Bernstein's method (BOM), Bernoulli's method (BrOM), and the shifted Legendre’s method (LOM). Furthermore, the maximum values of the residual error were computed for the proposed methods and others operational matrices methods for different cases. The results demonstrated the efficiency and accuracy of the optimal variational iteration method in solving nonlinear ordinary differential equations in comparison to other methods. All calculations in this paper were made using the Mathematica®14 software.
In this paper, game theory was used and applied to the transport sector in Iraq, as this sector includes two axes, the public transport axis and the second axis the private transport axis, as each of these axes includes several types of transport, namely (sea transport, air transport, land transport, transport by rail, port transport) and the travel and tourism sector, as public transport lacks this sector, as the competitive advantage matrix for the transport sector was formed and after applying the MinMax-MaxMin principle to the matrix in all its stages, it was found that there was an equilibrium point except for the last stage where the equilibrium point was not available Therefore, the use of the linear programming method was
... Show MoreLimestones have considerable commercial importance because they are used as building stones and are widely used for flooring and interior and exterior facings. On the other hand, the reserve calculation reveals the economic effectiveness of the investigation. This study aims to calculate the reserve of the middle Miocene limestone for engineering purposes. The limestone beds of the Nfayil Formation in Central Iraq have been studied over 15 outcrop sections. The Nfayil bed has an average thickness of about 1.64 m, while the overburden has an average of about 0.93 m. The average bulk density of limestone is 2.1 gm/cm3 . Kriging and triangulation method has been adopted and used in the calculation and assessment of reserve. The industrial laye
... Show MoreSignal denoising is directly related to sample estimation of received signals, either by estimating the equation parameters for the target reflections or the surrounding noise and clutter accompanying the data of interest. Radar signals recorded using analogue or digital devices are not immune to noise. Random or white noise with no coherency is mainly produced in the form of random electrons, and caused by heat, environment, and stray circuitry loses. These factors influence the output signal voltage, thus creating detectable noise. Differential Evolution (DE) is an effectual, competent, and robust optimisation method used to solve different problems in the engineering and scientific domains, such as in signal processing. This paper looks
... Show MoreIn the present paper, by making use of the new generalized operator, some results of third order differential subordination and differential superordination consequence for analytic functions are obtained. Also, some sandwich-type theorems are presented.
The aim of this paper is to present a method for solving third order ordinary differential equations with two point boundary condition , we propose two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by compared with conventional method .
Free boundary problems with nonlinear diffusion occur in various applications, such as solidification over a mould with dissimilar nonlinear thermal properties and saturated or unsaturated absorption in the soil beneath a pond. In this article, we consider a novel inverse problem where a free boundary is determined from the mass/energy specification in a well-posed one-dimensional nonlinear diffusion problem, and a stability estimate is established. The problem is recast as a nonlinear least-squares minimisation problem, which is solved numerically using the
The research aims to study and analysis of concurrent engineering (CE) and cost optimization (CO), and the use of concurrent engineering inputs to outputs to improve the cost, and the statement of the role of concurrent engineering in improving the quality of the product, and achieve savings in the design and manufacturing time and assembly and reduce costs, as well as employing some models to determine how much the savings in time, including the model (Lexmark) model (Pert) to determine the savings in design time for manufacturing and assembly time.
To achieve the search objectives, the General Company for Electrical and Electronic Industries \ Refrigerated Engine
... Show MoreThe importance of this research has been to rationalize the cost of producing maize seeds through the followers of modern techniques and methods in agricultural activities such as genetic engineering for increasing production efficiency of maize seeds as well as the importance of calculating seed cost rationalization through the ABC system and thus rationalizing government spending. The research is based on one hypothesis in two ways that the use of genetic engineering on maize seeds works to: one - increase production efficiency of seeds and savings in agricultural inputs. 2. Rationalize the costs of examining and planting maize seeds. In order to calculate the costs will be based on the cost system based on activities ABC. The research
... Show MoreThis paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closed-loop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loadi
... Show More