The consumption of fossil fuels has caused many challenges, including environmental and climate damage, global warming, and rising energy costs, which has prompted seeking to substitute other alternative sources. The current study explored the microwave pyrolysis of Albizia branches to assess its potential to produce all forms of fuel (solid, liquid, gas), time savings, and effective thermal heat transfer. The impact of the critical parameters on the quantity and quality of the biofuel generation, including time, power levels, biomass weight, and particle size, were investigated. The results revealed that the best bio-oil production was 76% at a power level of 450 W and 20 g of biomass. Additionally, low power levels led to enhanced biochar production, where a percentage of 70% appeared when employing a power level of 300 W. Higher power levels were used to increase the creation of gaseous fuels in all circumstances, such as in 700 W, the gas yield was 31%. The density, viscosity, acidity, HHV, GC-MS, and FTIR instruments were used to analyze the physical and chemical characteristics of the bio-oil. The GC-MS analysis showed that the bio-oil consists of aromatic compounds, ketones, aldehydes, acids, esters, alkane, alkenes and heterocyclic compounds. The most prevalent component was aromatic compounds with 12.79% and ketones with 12.15%, while the pH of the oil obtained was 5, and the HHV was 19.5 MJ/kg. The pyrolysis productions could be promising raw materials for different applications after further processing.
In this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the ar
... Show MoreBackground: techniques of image analysis have been used extensively to minimize interobserver variation of immunohistochemical scoring, yet; image acquisition procedures are often demanding, expensive and laborious. This study aims to assess the validity of image analysis to predict human observer’s score with a simplified image acquisition technique. Materials and methods: formalin fixed- paraffin embedded tissue sections for ameloblastomas and basal cell carcinomas were immunohistochemically stained with monoclonal antibodies to MMP-2 and MMP-9. The extent of antibody positivity was quantified using Imagej® based application on low power photomicrographs obtained with a conventional camera. Results of the software were employed
... Show MorePorous silicon (PS) layers are prepared by anodization for
different etching current densities. The samples are then
characterized the nanocrystalline porous silicon layer by X-Ray
Diffraction (XRD), Atomic Force Microscopy (AFM), Fourier
Transform Infrared (FTIR). PS layers were formed on n-type Si
wafer. Anodized electrically with a 20, 30, 40, 50 and 60 mA/cm2
current density for fixed 10 min etching times. XRD confirms the
formation of porous silicon, the crystal size is reduced toward
nanometric scale of the face centered cubic structure, and peak
becomes a broader with increasing the current density. The AFM
investigation shows the sponge like structure of PS at the lower
current density porous begi
Chilled ceilings systems offer potential for overall capital savings. The main aim of the present research is to investigate the thermal performance of the indirect contact closed circuit cooling tower, ICCCCT used with chilled ceiling, to gain a deeper knowledge in this important field of engineering which has been traditionally used in various industrial & HVAC systems. To achieve this study, experimental work were implemented for the ICCCCT use with chilled ceiling. In this study the thermal performances of closed wet cooling tower use with chilled ceiling is experimentally and theoretically investigated. Different experimental tests were conducted by varying the controlling parameters to investigate their effects
... Show MoreABSTRACT Background: According to Branemark’s protocol, the waiting period between tooth extraction and implant placement is 6–8 months; this is the late placement technique. Achieving and maintaining implant stability are prerequisites for a dental implant to be successful. Resonance Frequency Analysis (RFA) is a noninvasive diagnostic method that measures implant stability. The aim of this study was to investigate the influence of treatment protocol and implant dimensions on primary implant stability utilizing RFA. Materials and methods: This study included 63 Iraqi patients (37 male, 26 female; ranging 22-66 years). According to treatment protocol, the sample was divided into 2 groups; A (delayed) & B (immediate). Dental im
... Show MoreThe combustion and pyrolysis processes of sewage sludge were studied in the current report. Two kinds of sewage sludge(SS) were used, SS the sewage sludge was not treated, while SS-U90KHz the ultrasonic bath pre-treated sewage sludge with a frequency of 90KHz was not treated. Wastewater treatment plants are the origins of waste sludge. Analyses were performed roughly and finally. Thermogravimetric research analyzed the thermal behaviour of the analysed sewage bucket (TGA). The samples were heated at a constant rate of 25 to 800 Celsius by air (combustion) and nitrogen flow (pyrolysis). For sludges which have been investigated. In the TG/DTG curves, comparable thermal profiles were available. All of the TG/curves DTG’s were divided into th
... Show MoreThin films of Mn2O3 doped with Cu have been fabricated using the simplest and cheapest chemical spray pyrolysis technique onto a glass substrate heated up to 250 oC. Transmittance and absorptance spectra were studied in the wavelength range (300 -1100) nm. The average transmittance at low energy was about 60% and decrease with Cu doping, Optical constants like refractive index, extinction coefficient and dielectric constants (εr), (εi) are calculated and correlated with doping process.