The Ratawi Oil Field (ROF) is one of Iraq's most important oil fields because of its significant economic oil reserves. The major oil reserves of ROF are in the Mishrif Formation. The main objective of this paper is to assess the petrophysical properties, lithology identification, and hydrocarbon potential of the Mishrif Formation using interpreting data from five open-hole logs of wells RT-2, RT-4, RT-5, RT-6, and RT-42. Understanding reservoir properties allows for a more accurate assessment of recoverable oil reserves. The rock type (limestone) and permeability variations help tailor oil extraction methods, extraction methods and improving recovery techniques. The petrophysical properties were calculated using Interactive Petrophysics software (version 4.5), employing various methods such as density (RHOB), neutron porosity (NPHI), sonic, gamma-ray, resistivity, and caliper logs. The well logs were evaluated and adjusted based on the environmental conditions. The lithology of the formations was identified through Neutron-Density cross plots, which revealing a composition primarily of limestone. The optimum approach for calculating clay volume was the gamma ray method, which indicated approximately 10% clay content. For calibrating effective porosity with core data, the Neutron-Density method proved to be the most accurate, showed values between 12% and 14% in the MB unit. The Archie technique was selected for its compatibility with limestone. Formation water resistivity was estimated from analogies of the southern field of the Mishrif reservoir (RW=0.021). Permeability was calculated using the flow zone indicator method (FZI) with an average between 0.2 and 0.35 md. According to the petrophysical analysis conducted at Mishrif, the formation consists of four units: MA, MB1, MB2, and MC. The most significant hydrocarbon-bearing unit in the formation is MB1.The insights gained from this study not only enhance the understanding of the Mishrif Formation but also contribute to the development of more efficient extraction techniques and improved reservoir management strategies. By optimizing recovery methods based on precise petrophysical and lithological data, the study supports the sustainable and economically viable exploitation of hydrocarbon resources in the ROF and similar reservoirs worldwide. These findings are significant in the broader context of petroleum engineering and reservoir management, as they provide a foundation for improved recovery techniques and sustainable resource management.
Mishrif Formation regards one of the most important reservoirs in Iraq. Well logging represents one of the most important tool in the formation evaluation. According to the Petrophysical properties that have been gotten from well logging, Mishrif Formation in terms of reservoirs units, consist of several reservoirs units. Major reservoirs units divided into three reservoir units,MA,MB&MC. Each of these major units divided into minor reservoirs units (MB11,MB12,MC2&MC3).MB major reservoir units represent the best reservoir unit. These reservoirs units separated by cap rocks(mainly tight limestone)(CR1,CR2,CR3,CR4,CR5,CR6,and CR7).CPI were demonstrated for all wells.Hydrocarbon saturation vs.
... Show MoreNasryia oil field is located about 38 Km to the north-west of Nasryia city. The field was discovered in 1975 after doing seismic by Iraqi national oil company. Mishrif formation is a carbonate rock (Limestone and Dolomite) and its thickness reach to 170m. The main reservoir is the lower Mishrif (MB) layer which has medium permeability (3.5-100) md and good porosity (10-25) %. Form well logging interpretation, it has been confirmed the rock type of Mishrif formation as carbonate rock. A ten meter shale layer is separating the MA from MB layer. Environmental corrections had been applied on well logs to use the corrected one in the analysis. The combination of Neutron-Density porosity has been chosen for interpretation as it is c
... Show MoreSix main microfacies are identified which are Lime Mudstone, Bioclastic Wackeston, Bioclastic Packstone-Wackestone, Bioclastic Wackestone- Mudestone, Pelagic Mudstone–Wackestone, Bioclastic Packstone -Grainston Microfacies in addition to their associated depositional environment. The diagenesis process have affected the Mishrif rocks and played a role in deteriorating reservoir porosity in well Ga-2 and enhancing it in well Ga1,3.These processes include: cementation, micritization, recrystallization,dissolution,compaction pressure solution and dolomitization.
Three seismic instantaneous attributes (phase, frequency, and variance) were utilized on 3D-seismic poststack migrated data, covering 617.31 km2, integrated with data of two wells (Du-1 and Du-2) in Dujaila oil field, southeast of Iraq. They gave good results in detecting reef buildups and confirmed the existence of the stratigraphic hydrocarbon trap that was not obvious in the conventional seismic amplitude sections. They display several seismic criteria in attribute sections for recognizing reef buildups and hydrocarbon accumulation, such as phase reversal, low frequency, and high amplitude variance. The seismic attributes emphasized that the stratigraphic trap of reef rudist buildups with hydrocarbon content is con
... Show MoreYamama Formation (Valanginian-Early Hauterivian) is one of the most important oil production reservoirs in southern Mesopotamian Zone. The Yamama Formation in south Iraq comprises outer shelf argillaceous limestones and oolitic, pelloidal, pelletal and pseudo-oolitic shoal limestones. The best oil prospects are within the oolite shoals. Yamama Formation is divided into seven zones: Upper Yamama, Reservoir Units YR-A & YR-B separated by YB-1, and YR-B Lower & two Tight zones: low (porosity, permeability and oil saturation) with variable amounts of bitumen. These reservoir units are thought to be at least partially isolated from each other.
Gas Chromatography GC, Gas Chromatography–Mass spectrometry GC/MS techniques used for analysis of the crude oils that taken from (10) producing wells in Nasiriyah oil field including (NS-1, NS-3, NS-4, NS-5, NS-6, NS-7, NS-8, NS-9, NS-10, and NS-12) from Mishrif reservoir . This reservoir is one of the important reservoirs in Al-Nasiriyah oil field, and it will be the main subject in the current study in order to provide information of crude oil analysis in this area, also to provide information on its characterizations. Mishrif Formation is one of the principle carbonate reservoir in central and southern Iraq. It is part of the wasia group and widespread throughout the Arabian gulf, It is deposited during Cenomanian-Early Turonian cyc
... Show MoreSeismic data interpretation study has been done for Mishrif Formation in Nasiriyah oil field at the southern part of Iraq in order to update the structural image of Mishrif reservoir which is currently the main unit bearing the oil in subsurface area covered about (447) km2. This study is achieved by using Petrel, IP, and other approval software. Seismic to well tie method in conventional qualitative interpretation used to re-identify the top and bottom of the Mishrif reservoir which converted into structural depth maps and then followed by constructing and developing 3-D structural model helped to understand the vertical and lateral thickness extensions heterogeneity of Mishrif Formation in the field. The cap rock (CRI) has thickness ra
... Show MoreThe Nahr Umr Formation is considered one of the main reservoirs produced in southern Iraq. It is one of the important siliciclastic deposits of the Cretaceous sequence of Iraq oilfields. Zubair oil fields ZB-190 and ZB-047 were chosen to study areas. This study depends on the available core and cutting samples to determine the facies analysis, depositional environments, petrographic characteristics and diagenesis processes. Based on the description of the core and the borehole, six types of facies were distinguished in the Nahr Umr Formation, resulting in an intercalated sandstone and shale with a thin layer of siltstone. The petrographic study of the clastic part of the Nahr Umr Formation showed that the sandstone is composed m
... Show MorePetrophysical characterization is the most important stage in reservoir management. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umar Formation in Nasiriya oil field. The available well logs are (sonic, density, neutron, gamma-ray, SP, and resistivity logs). The petrophysical parameters such as the volume of clay, porosity, permeability, water saturation, were computed and interpreted using IP4.4 software. The lithology prediction of Nahr Umar formation was carried out by sonic -density cross plot technique. Nahr Umar Formation was divided into five units based on well logs interpretation and petrophysical Analysis: Nu-1 to Nu-5. The formation lithology is mainly
... Show More