Orthogonal polynomials and their moments serve as pivotal elements across various fields. Discrete Krawtchouk polynomials (DKraPs) are considered a versatile family of orthogonal polynomials and are widely used in different fields such as probability theory, signal processing, digital communications, and image processing. Various recurrence algorithms have been proposed so far to address the challenge of numerical instability for large values of orders and signal sizes. The computation of DKraP coefficients was typically computed using sequential algorithms, which are computationally extensive for large order values and polynomial sizes. To this end, this paper introduces a computationally efficient solution that utilizes the parallel processing capabilities of modern central processing units (CPUs), namely the availability of multiple cores and multithreading. The proposed multi-threaded implementations for computing DKraP coefficients divide the computations into multiple independent tasks, which are executed concurrently by different threads distributed among the independent cores. This multi-threaded approach has been evaluated across a range of DKraP sizes and various values of polynomial parameters. The results show that the proposed method achieves a significant reduction in computation time. In addition, the proposed method has the added benefit of applying to larger polynomial sizes and a wider range of Krawtchouk polynomial parameters. Furthermore, an accurate and appropriate selection scheme of the recurrence algorithm is introduced. The proposed approach introduced in this paper makes the DKraP coefficient computation an attractive solution for a variety of applications.
This paper investigates the performance evaluation of two state feedback controllers, Pole Placement (PP) and Linear Quadratic Regulator (LQR). The two controllers are designed for a Mass-Spring-Damper (MSD) system found in numerous applications to stabilize the MSD system performance and minimize the position tracking error of the system output. The state space model of the MSD system is first developed. Then, two meta-heuristic optimizations, Simulated Annealing (SA) optimization and Ant Colony (AC) optimization are utilized to optimize feedback gains matrix K of the PP and the weighting matrices Q and R of the LQR to make the MSD system reach stabilization and reduce the oscillation of the response. The Matlab softwar
... Show MoreThis study investigates the impact of spatial resolution enhancement on supervised classification accuracy using Landsat 9 satellite imagery, achieved through pan-sharpening techniques leveraging Sentinel-2 data. Various methods were employed to synthesize a panchromatic (PAN) band from Sentinel-2 data, including dimension reduction algorithms and weighted averages based on correlation coefficients and standard deviation. Three pan-sharpening algorithms (Gram-Schmidt, Principal Components Analysis, Nearest Neighbour Diffusion) were employed, and their efficacy was assessed using seven fidelity criteria. Classification tasks were performed utilizing Support Vector Machine and Maximum Likelihood algorithms. Results reveal that specifi
... Show MoreIn this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.
The security of message information has drawn more attention nowadays, so; cryptography has been used extensively. This research aims to generate secured cipher keys from retina information to increase the level of security. The proposed technique utilizes cryptography based on retina information. The main contribution is the original procedure used to generate three types of keys in one system from the retina vessel's end position and improve the technique of three systems, each with one key. The distances between the center of the diagonals of the retina image and the retina vessel's end (diagonal center-end (DCE)) represent the first key. The distances between the center of the radius of the retina and the retina vessel's end (ra
... Show MoreThe research aims to test the relationship and impact of High Involvement Management as an independent variable in negotiation strategies as a response variable, at the headquarters of the Iraqi Ministry of Industry and Minerals in Baghdad Governorate, and then trying to come up with a set of recommendations that contribute to strengthening the negotiations carried out by the ministry’s leaders and based on the importance of the topic of research in public organizations and the importance of the surveyed organizations to the society. The descriptive-analytical approach was adopted in the completion of this research, and the research included a sample of (180) leaders of the Iraqi Ministry of Industry and Minerals, and data was
... Show MoreIn this paper, our aim is to study variational formulation and solutions of 2-dimensional integrodifferential equations of fractional order. We will give a summery of representation to the variational formulation of linear nonhomogenous 2-dimensional Volterra integro-differential equations of the second kind with fractional order. An example will be discussed and solved by using the MathCAD software package when it is needed.
The aim of this paper is to present a method for solving third order ordinary differential equations with two point boundary condition , we propose two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by compared with conventional method .
Precision is one of the main elements that control the quality of a geodetic network, which defines as the measure of the network efficiency in propagation of random errors. This research aims to solve ZOD and FOD problems for a geodetic network using Rosenbrock Method to optimize the geodetic networks by using MATLAB programming language, to find the optimal design of geodetic network with high precision. ZOD problem was applied to a case study network consists of 19 points and 58 designed distances with a priori deviation equal to 5mm, to determine the best points in the network to consider as control points. The results showed that P55 and P73 having the minimum ellipse of error and considered as control points. FOD problem was applie
... Show MoreIn this paper a new method is proposed to perform the N-Radon orthogonal frequency division multiplexing (OFDM), which are equivalent to 4-quadrature amplitude modulation (QAM), 16-QAM, 64-QAM, 256-QAM, ... etc. in spectral efficiency. This non conventional method is proposed in order to reduce the constellation energy and increase spectral efficiency. The proposed method gives a significant improvement in Bit Error Rate performance, and keeps bandwidth efficiency and spectrum shape as good as conventional Fast Fourier Transform based OFDM. The new structure was tested and compared with conventional OFDM for Additive White Gaussian Noise, flat, and multi-path selective fading channels. Simulation tests were generated for different channels
... Show More