Orthogonal polynomials and their moments serve as pivotal elements across various fields. Discrete Krawtchouk polynomials (DKraPs) are considered a versatile family of orthogonal polynomials and are widely used in different fields such as probability theory, signal processing, digital communications, and image processing. Various recurrence algorithms have been proposed so far to address the challenge of numerical instability for large values of orders and signal sizes. The computation of DKraP coefficients was typically computed using sequential algorithms, which are computationally extensive for large order values and polynomial sizes. To this end, this paper introduces a computationally efficient solution that utilizes the parallel processing capabilities of modern central processing units (CPUs), namely the availability of multiple cores and multithreading. The proposed multi-threaded implementations for computing DKraP coefficients divide the computations into multiple independent tasks, which are executed concurrently by different threads distributed among the independent cores. This multi-threaded approach has been evaluated across a range of DKraP sizes and various values of polynomial parameters. The results show that the proposed method achieves a significant reduction in computation time. In addition, the proposed method has the added benefit of applying to larger polynomial sizes and a wider range of Krawtchouk polynomial parameters. Furthermore, an accurate and appropriate selection scheme of the recurrence algorithm is introduced. The proposed approach introduced in this paper makes the DKraP coefficient computation an attractive solution for a variety of applications.
Ytterbium-doped (Y2O3), (Sc2O3) and (YAG) crystals are very important for high-power thindisk lasers. These lasers have shown their ability to operate quasi-three-level materials with high
efficiency as well as high thermal conductivity ratio for crystalline hosts. All these reasons have
required studying this type of laser. In the present work, the analytical solution was found for the
equation of laser output power, pumping threshold power, and efficiency of a quasi-three-level
thin disk laser. The numerical solution of these equations was also found through the Matlab
program at the fundamental transverse mode, at a temperature of 299K0
and with high pumping
capabilities in order to know the e
This article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.
This work predicts the effect of thermal load distribution in polymer melt inside a mold and a die during injection and extrusion processes respectively on the structure properties of final product. Transient thermal and structure models of solidification process for polycarbonate polymer melt in a steel mold and die are studied in this research. Thermal solution obtained according to solidify the melt from 300 to 30Cand Biot number of 16 and 112 respectively for the mold and from 300 to 30 Cand Biot number of 16 for die. Thermal conductivity, and shear and Young Modulus of polycarbonate are temperature depending. Bonded contact between the polycarbonate and the steel surfaces is suggested to transfer the thermal load. The temperat
... Show MorePyrolysis of high density polyethylene (HDPE) was carried out in a 750 cm3 stainless steel autoclave reactor, with temperature ranging from 470 to 495° C and reaction times up to 90 minute. The influence of the operating conditions on the component yields was studied. It was found that the optimum cracking condition for HDPE that maximized the oil yield to 70 wt. % was 480°C and 20 minutes. The results show that for higher cracking temperature, and longer reaction times there was higher production of gas and coke. Furthermore, higher temperature increases the aromatics and produce lighter oil with lower viscosity.
In the recent decade, injection of nanoparticles (NPs) into underground formation as liquid nanodispersions has been suggested as a smart alternative for conventional methods in tertiary oil recovery projects from mature oil reservoirs. Such reservoirs, however, are strong candidates for carbon geo-sequestration (CGS) projects, and the presence of nanoparticles (NPs) after nanofluid-flooding can add more complexity to carbon geo-storage projects. Despite studies investigating CO2 injection and nanofluid-flooding for EOR projects, no information was reported about the potential synergistic effects of CO2 and NPs on enhanced oil recovery (EOR) and CGS concerning the interfacial tension (γ) of CO2-oil system. This study thus extensively inves
... Show MoreBackground: The main drawback of soft lining materials was that they debonded from the denture base after a certain period of usage. Therefore, the purpose of this research was to determine the impact of oxygen and argon plasma treatment on the shear bonding strength of soft liners to two different kinds of denture base materials: conventional acrylic resin and high impact acrylic resin. Materials and Methods: Heat cure conventional and high impact acrylic blocks (40 for each group) were prepared. A soft liner connected the final test specimen of two blocks of each acrylic material. Shear bond strength (SBS) was assessed using universal testing machine. Additional blocks were also prepared for analyzing Vickers microhardness, contact ang
... Show MoreThis study aimed to explore the manufacture of high-fat pellets for obesity induction diets in male Wistar rats and determined its effect on lipid profiles and body mass index. It was an experimental laboratory method with a post-test randomized control group. Formulation of high-fat pellets (HFD) and physico-chemical characteristics of pellets were conducted in September 2019. This study used about 28 male Wistar white rats, two months old, and 150-200 g body weight. Rats were acclimatized for seven days, then divided into four groups: 7 rats were given a standard feed of Confeed PARS CP594 (P0), and three groups (P1, P2, P3) were given high-fat feed (HFD FII) 30 g/head/day. The result showed that the mean fat content of Formula II pell
... Show MoreThermal and catalytic pyrolysis of waste plastics in an inert atmosphere has been regarded as a creative method, since pyrolysis can convert plastics waste into hydrocarbons that can be used either as fuels or as a source of chemicals.
Natural Iraqi kaolin clay was used to synthesis the NaX nano- zeolite by hydrothermal conditions with average particle size equal to 77.63nm.Thermal decomposition kinetics of high-density polyethylene (HDPE) in the absence and presence of catalysts nano NaX Zeolite was investigated. Thermal and catalytic degradation of HDPE was performed using a thermogravimetric analyzer in nitrogen atmosphere under non-isothermal conditions 4, 7 and 10 °C/min heating rates were employed in thermogravimetric anal
... Show MoreThe goal of this experimental study is to determine the effects of different parameters (Flow rate, cuttings density, cuttings size, and hole inclination degree) on hole cleaning efficiency. Freshwater was used as a drilling fluid in this experiment. The experiments were conducted by using flow loop consist of approximately 14 m (46 ft) long with transparent glass test section of 3m (9.84 ft.) long with 4 inches (101.6 mm) ID, the inner metal drill pipe with 2 inches (50.8 mm) OD settled with eccentric position positive 0.5. The results obtained from this study show that the hole cleanings efficiency become better with high flow rate (21 m3/hr) and it increase as the hole inclination angles increased from 60 to 90 degree due to dominated
... Show More